Математика

Тема 9: Линейная функция и линейные уравнения. Профильный уровень

Урок 4: Линейное уравнение с двумя переменными и его график

  • Видео
  • Тренажер
  • Теория
Заметили ошибку?

Напоминание теоретического материала и формулировка определения линейного уравнения с двумя переменными

 

Мы познакомились с понятиями координатной оси и координатной плоскости.  Мы знаем, что каждая точка плоскости однозначно задает пару чисел (х; у), причем первое число есть абсцисса точки, а второе – ордината.

 

Мы будем очень часто встречаться с линейным уравнением с двумя переменными, решением которого и есть пара чисел, которую можно представить на координатной плоскости.

Уравнение вида:

, где a, b, с – числа, причем

Называется линейным уравнением с двумя переменными х и у. Решением такого уравнения будет любая такая пара чисел х и у, подставив которую в уравнение мы получим верное числовое равенство.

Пара чисел будет изображаться на координатной плоскости в виде точки.

У таких уравнений мы увидим много решений, то есть много пар чисел, и все соответствующие точки будут лежать на одной прямой.

 

Изучение алгоритма построения графика уравнения на примере

 

 

Рассмотрим пример:

 

Пример 1:

; ; ;

Чтобы найти решения данного уравнения нужно подобрать соответствующие пары чисел х и у:

Пусть , тогда исходное уравнение превращается в уравнение с одной неизвестной:

,

То есть, первая пара чисел, являющаяся решением заданного уравнения (0; 3). Получили точку А(0; 3)

Пусть . Получим исходное уравнение с одной переменной: , отсюда , получили точку В(3; 0)

Занесем пары чисел в таблицу:

х

0

3

у

3

0

Построим на графике точки и проведем прямую:

Отметим, что любая точка на данной прямой будет решением заданного уравнения. Проверим – возьмем точку с координатой  и по графику найдем ее вторую координату. Очевидно, что в этой точке . Подставим данную пару чисел в уравнение. Получим 0=0 – верное числовое равенство, значит точка, лежащая на прямой, является решением.

Пока доказать, что любая точка, лежащая на построенной прямой является решением уравнения, мы не можем, поэтому принимаем это за правду и докажем позже.

 

Решение примера

 

 

Пример 2 – построить график уравнения:

 

Составим таблицу, нам достаточно для построения прямой двух точек, но возьмем третью для контроля:

х

0

-2

2

у

3

0

6

В первой колонке мы взяли удобный , найдем у:

, ,

Во втором столбике мы взяли удобный , найдем х:

, , ,

Возьмем для проверки  и найдем у:

, ,

Построим график:

Умножим заданное уравнение на два:

От такого преобразования множество решений не изменится и график останется таким же самым.

 

Выводы по уроку

 

 

Вывод: мы научились решать уравнения с двумя переменными и строить их графики, узнали, что графиком подобного уравнения есть прямая и что любая точка этой прямой является решением уравнения

 

 

Список рекомендованной литературы

  1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.
  2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ 
  3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

 

Рекомендованные ссылки на ресурсы интернет

  1. Интернет-портал Nado5.ru (Источник).
  2. Портал для семейного просмотра (Источник).
  3. Интернет-портал Nado5.ru (Источник).

 

Рекомендованное домашнее задание

  1. Задание 1: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, № 960, ст.210;
  2. Задание 2: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, № 961, ст.210;
  3. Задание 3: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, № 962, ст.210;

 

Видеоурок: Линейное уравнение с двумя переменными и его график по предмету Алгебра за 7 класс.