Математика
Тема 9: Линейная функция и линейные уравнения. Профильный уровеньУрок 4: Линейное уравнение с двумя переменными и его график
- Видео
- Тренажер
- Теория
Напоминание теоретического материала и формулировка определения линейного уравнения с двумя переменными
Мы познакомились с понятиями координатной оси и координатной плоскости. Мы знаем, что каждая точка плоскости однозначно задает пару чисел (х; у), причем первое число есть абсцисса точки, а второе – ордината.
Мы будем очень часто встречаться с линейным уравнением с двумя переменными, решением которого и есть пара чисел, которую можно представить на координатной плоскости.
Уравнение вида:
, где a, b, с – числа, причем
Называется линейным уравнением с двумя переменными х и у. Решением такого уравнения будет любая такая пара чисел х и у, подставив которую в уравнение мы получим верное числовое равенство.
Пара чисел будет изображаться на координатной плоскости в виде точки.
У таких уравнений мы увидим много решений, то есть много пар чисел, и все соответствующие точки будут лежать на одной прямой.
Изучение алгоритма построения графика уравнения на примере
Рассмотрим пример:
Пример 1:
; ; ;
Чтобы найти решения данного уравнения нужно подобрать соответствующие пары чисел х и у:
Пусть , тогда исходное уравнение превращается в уравнение с одной неизвестной:
,
То есть, первая пара чисел, являющаяся решением заданного уравнения (0; 3). Получили точку А(0; 3)
Пусть . Получим исходное уравнение с одной переменной: , отсюда , получили точку В(3; 0)
Занесем пары чисел в таблицу:
х |
0 |
3 |
у |
3 |
0 |
Построим на графике точки и проведем прямую:
Отметим, что любая точка на данной прямой будет решением заданного уравнения. Проверим – возьмем точку с координатой и по графику найдем ее вторую координату. Очевидно, что в этой точке . Подставим данную пару чисел в уравнение. Получим 0=0 – верное числовое равенство, значит точка, лежащая на прямой, является решением.
Пока доказать, что любая точка, лежащая на построенной прямой является решением уравнения, мы не можем, поэтому принимаем это за правду и докажем позже.
Решение примера
Пример 2 – построить график уравнения:
Составим таблицу, нам достаточно для построения прямой двух точек, но возьмем третью для контроля:
х |
0 |
-2 |
2 |
у |
3 |
0 |
6 |
В первой колонке мы взяли удобный , найдем у:
, ,
Во втором столбике мы взяли удобный , найдем х:
, , ,
Возьмем для проверки и найдем у:
, ,
Построим график:
Умножим заданное уравнение на два:
От такого преобразования множество решений не изменится и график останется таким же самым.
Выводы по уроку
Вывод: мы научились решать уравнения с двумя переменными и строить их графики, узнали, что графиком подобного уравнения есть прямая и что любая точка этой прямой является решением уравнения
Список рекомендованной литературы
- Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.
- Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ
- Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.
Рекомендованные ссылки на ресурсы интернет
- Интернет-портал Nado5.ru (Источник).
- Портал для семейного просмотра (Источник).
- Интернет-портал Nado5.ru (Источник).
Рекомендованное домашнее задание
- Задание 1: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, № 960, ст.210;
- Задание 2: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, № 961, ст.210;
- Задание 3: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, № 962, ст.210;