Математика
Тема 10: Степень с натуральным показателем и одночлены. Профильный уровеньУрок 13: Сложение и вычитание одночленов
- Видео
- Тренажер
- Теория
Напоминание определений и правила приведения к стандартному виду уроков
Вспомним, что называется одночленом, и какие операции можно делать с одночленами. Одночлен – это произведение чисел и степеней. Рассмотрим два примера:
;
;
Оба выражения являются одночленами и перед тем, как приступить к сложению или вычитанию, необходимо привести их к стандартному виду:
;
;
Напомним, что для приведения одночлена к стандартному виду необходимо вначале получить численный коэффициент, перемножив все численные множители, а после этого перемножить соответствующие степени.
Выясним, можно ли складывать наши два одночлена – нет, нельзя, потому что можно складывать лишь те одночлены, которые имеют одинаковую буквенную часть, то есть только подобные одночлены. То есть, мы должны научиться различать подобные и не подобные одночлены.
Определение подобия одночленов, примеры
Рассмотрим примеры подобных одночленов:
Одночлены и являются подобными, так как имеют одинаковую буквенную часть -
Еще один пример. Запишем одночлен и одночлен . Мы можем приписать второму одночлену абсолютно любой численный коэффициент и получим одночлен, подобный первому. Выберем, например, коэффициент и получим два подобных одночлена: и
Рассмотрим следующий пример. Первый одночлен , его коэффициент равен единице. Запишем теперь его буквенную часть и добавим к ней произвольный численный коэффициент, например, . Имеем два подобных одночлена: и .
Сделаем вывод: подобные одночлены имеют одинаковую буквенную часть, и такие одночлены можно складывать и вычитать.
Сложение подобных одночленов, примеры и правило
Теперь приведем примеры не подобных одночленов:
и ; данные одночлены имеют разную буквенную часть, переменная а в них представлена в разных степенях, поэтому одночлены не являются подобными
Еще один пример: одночлены и также не являются подобными, их буквенные части отличаются степенями переменной а.
Рассмотрим третью пару одночленов: и также не являются подобными.
Теперь разберем сложение подобных одночленов, для этого выполним пример:
Сложить два одночлена:
Очевидно, что данные одночлены подобны, так как легко заметить, что буквенные части их одинаковы, однако математически подобие одночленов можно доказать заменив буквенную часть другой буквой, и если для обоих одночленов эта буква окажется одинаковой, то одночлены подобны. Переходя к примеру, заменим в первом одночлене на ? Тогда и во втором одночлене ту же самую буквенную часть заменим на
Получим:
Сложив два эти выражения, получим . Теперь вернемся к исходным переменным – заменим в ответе переменную t на , получаем окончательный ответ:
Теперь сформулируем правило сложения одночленов:
Для того чтобы получить сумму подобных одночленов необходимо сложить их коэффициенты, а буквенную часть дописать такую же, как у исходных слагаемых.
Рассмотрим примеры:
1)
2)
Комментарий к примеру №1: сначала мы записываем в результат сумму коэффициентов одночленов, то есть , затем переписываем буквенную часть без изменений, то есть
Комментарий к примеру №2: аналогично первому примеру сначала записываем сумму коэффициентов, то есть , затем переписываем буквенную часть без изменений - .
Формулировка правила вычитания подобных одночленов, примеры
Перейдем к правилу вычитания одночленов. Рассмотри примеры:
1)
Правило вычитания подобных одночленов аналогично правилу сложения: буквенную часть переписываем без изменений, а коэффициенты вычесть, при чем вычесть в правильном порядке. Для нашего примера:
2)
3)
Выводы относительно сложения и вычитания подобных одночленов
Сделаем вывод: складывать и вычитать можно любые, но только подобные одночлены, для этого нужно складывать или вычитать их коэффициенты, буквенную часть переписывая в исходном виде. Не подобные одночлены ни складывать, ни вычитать нельзя.
Решение задачи на упрощение выражения – прямая задача
Теперь, зная алгоритм сложения и вычитания подобных одночленов, мы можем решать некоторые типовые задачи.
Задачи на упрощение:
Упростить выражение:
Первый одночлен записан в стандартном виде, его больше упростить нельзя, второй и третий не в стандартном виде, значит, первым действием при упрощении выражений с одночленами выполняем приведение к стандартному виду одночленов, которые можно к нему привести.
Итак, приведем к стандартному виду вначале второй, а потом и третий одночлены:
Перепишем исходное выражение с учетом выполненных преобразований:
Мы видим одинаковую буквенную часть у всех трех одночленов, а, значит, они подобны, то есть мы имеем право складывать их и вычитать. Согласно правилу, мы выполним необходимые действия с коэффициентами, а буквенную часть перепишем без изменений:
Решение обратной задачи – разложение одночлена на слагаемые
Существует обратная задача. Задан одночлен . Представить одночлен в виде суммы одночленов.
У всех одночленов, в виде суммы которых мы представим заданный, будет одинаковая буквенная часть, одинаковая также и с заданным одночленом - . Представим наш одночлен, например, в виде суммы двух слагаемых. Для этого представим коэффициент как сумму:
А теперь запишем полученное представление: сначала пишем первое слагаемое, умноженное на буквенную часть, а затем второе также умноженное на буквенную часть:
Данная задача имеет бесконечное количество решений, так как число 30 можно представить по-разному, например:
Тогда:
Решение задачи на определение подобных одночленов и их сложение
Рассмотрим еще один вид типовых задач: среди данных одночленов найти подобные и сложить их:
; ; ;
Очевидно, что одинаковую буквенную часть имеют первый, второй и последний одночлены. Теперь выполним сложение:
;
Список рекомендованной литературы
1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.
2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ
3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.
Рекомендованные ссылки на ресурсы интернет
1. Школьный помощник (Источник).
2. Сайт учителя математики и информатики (Источник).
Рекомендованное домашнее задание
Задание 1: упростить выражения.
а) ;
б) ;
в) ;
г) ;
Задание 2: разложить одночлен на сумму или разность четырьмя различными способами:
;
Задание 3: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, №263, стр.58. Для каждой пары подобных одночленов выполнить сложение и вычитание, а для не подобных указать, какие действия необходимо выполнить, чтобы они стали подобными.