Математика

Тема 10: Алгебраические дроби. Профильный уровень

Урок 18: Решение рациональных уравнений

  • Видео
  • Тренажер
  • Теория
Заметили ошибку?

 

 

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

 

Урок: Решение рациональных уравнений

 

1. Пример решения рационального уравнения, являющегося математической моделью текстовой задачи

 

 

Как вы уже успели заметить на предыдущем уроке, основа решения рациональных уравнений – техника преобразования рациональных выражений. Рассмотрим пример решения рационального уравнения.

 

Пример 1

Решить уравнение: .

Решение:

В первую очередь обратим внимание на то, что в числителях обеих дробей, а также в правой части уравнения стоят чётные числа. То есть, можно упростить уравнение, поделив обе его части на . Этот шаг не является обязательным, но, чем проще уравнение, тем легче его решать, а чем меньше числа, фигурирующие в уравнении, тем легче арифметические вычисления при его решении.

В результате сокращения получаем:

Теперь перенесём все члены уравнения в левую часть, чтобы получить справа , а затем приведём полученные в левой части дроби к общему знаменателю:

Напомним, что дробь равна  тогда и только тогда, когда её числитель равен , а знаменатель не равен . Поэтому наше уравнение превращается в следующую систему:

 

Теперь вспомним ещё один важный факт: произведение равно  тогда и только тогда, когда хотя бы один из его множителей равен , а остальные множители при этом существуют. И наша система превращается в следующую:

.

Оба полученных корня являются решениями данного уравнения, так как при них знаменатель определён.

Ответ: .

 

2. Пример текстовой задачи и решения её с помощью математического моделирования

 

 

Рассмотренное нами уравнение является моделью для такой задачи:

 

Задача 1

Лодка прошла  по течению реки и  против течения реки, затратив на весь путь . Чему равна собственная скорость лодки, если скорость течения реки равна ?

Решение:

Решение данной задачи осуществим с помощью метода математического моделирования и выделим 3 этапа данного метода.

Этап 1. Составление математической модели

Обозначим через  собственную скорость лодки (это стандартный приём при решении текстовых задач – обозначить с помощью неизвестной ту величину, которая спрашивается в условии задачи). Тогда:

 – скорость движения лодки по течению реки;

 – скорость движения лодки против течения реки.

В этом случае, воспользовавшись формулой: , получаем, что время движения лодки по течению реки выражается как , а время движения лодки против течения реки – . Тогда общее время движения лодки равно , откуда получаем уравнение:

 – это и есть математическая модель данной задачи.

Этап 2. Работа с математической моделью

В данном случае работа с математической моделью сводится к решению данного рационального уравнения, что мы уже сделали в примере 1. При этом получили корни уравнения: .

Этап 3. Ответ на вопрос задачи

Дело в том, что математическая модель потому и является математической, что абстрагирована от реальной жизни. Если брать конкретно данную задачу, то математическая модель – это уравнение, которое может иметь любые корни. Однако неизвестная величина обозначает скорость лодки, поэтому не может быть, к примеру, отрицательной. Или: не может быть меньше скорости течения реки, иначе бы лодка не смогла бы плыть против течения. И такие ограничения могут быть в самых разных задачах. Поэтому, прежде чем записать ответ, необходимо оценить, является ли он правдоподобным.

В данном случае очевидно, что  не подходит, так как лодка не смогла бы с такой скоростью плыть против течения. Поэтому в ответ пойдёт только одна величина: .

Ответ:

 

3. Различные примеры решения рациональных уравнений

 

 

Рассмотрим несколько примеров на решение непосредственно рациональных уравнений.

 

Пример 2

Решить уравнение: .

Решение:

Перенесём все слагаемые в левую часть, а затем приведём дроби к общему знаменателю.

Снова воспользуемся тем фактом, что дробь равна  тогда и только тогда, когда её числитель равен , а знаменатель не равен . Из этого следует, что данное уравнение эквивалентно системе:

Ответ:.

Пример 3

Решить уравнение: .

Решение:

В данном уравнении в правой части уже стоит , поэтому ничего переносить левую часть не нужно. Сразу приведём дроби в левой части к общему знаменателю:

.

Снова воспользуемся тем фактом, что дробь равна  тогда и только тогда, когда её числитель равен , а знаменатель не равен . Из этого следует, что данное уравнение эквивалентно системе:

. Подставив данное значение в знаменатель, убеждаемся, что он не равен . Значит, это значение переменной является ответом.

Ответ:.

Пример 4

Решить уравнение: .

Решение:

Схема решения данного уравнения абсолютно такая же, как и у предыдущих:

Ответ:.

 

4. Решение задачи, сводящейся к рациональному уравнению

 

 

К решению рациональных уравнений часто сводятся различные задачи. Рассмотрим один из таких примеров.

 

Задача 2

Существует ли такое значение , при котором разность дробей  и  равна ?

Решение:

Запишем уравнение, соответствующее условию данной задачи: .

Решим данное рациональное уравнение точно так же, как и в предыдущих примерах.

Приведём подобные слагаемые в числителе (они отмечены одинаковым цветом):

То есть, такое значение  существует.

Ответ: существует:.

Итак, мы рассмотрели примеры решения рациональных уравнений, а также их использование при решении различных задач. На следующих уроках мы перейдём к изучению новой темы, посвящённой различным функциям.

 

Список литературы

1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Фестиваль педагогических идей «Открытый урок» (Источник).

2. Портал для всей семьи (Источник).

3. Обучающие курсы (Источник).

 

Домашнее задание

1. №№165, 178. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

2. Решить уравнения: а), б) .

3. Выполнить действия: а) , б) .

4. Два экскаватора могут выкопать котлован за . Первый экскаватор может выкопать котлован в 4 раза быстрее, чем второй. За сколько часов может выкопать такой же котлован каждый экскаватор, работая отдельно?

 

Видеоурок: Решение рациональных уравнений по предмету Алгебра за 8 класс.