Математика
Тема 11: Функция y =√x и функция y=k/x. Профильный уровеньУрок 16: Преобразование и упрощение более сложных выражений с корнями
- Видео
- Тренажер
- Теория
Повторение свойств квадратных корней
Вкратце повторим теорию и напомним основные свойства квадратных корней.
Свойства квадратных корней:
1. , следовательно, ;
2. ;
3. ;
4. .
Примеры на упрощение выражений с корнями
Перейдем к примерам использования этих свойств.
Пример 1. Упростить выражение .
Решение. Для упрощения число 120 необходимо разложить на простые множители:
. Квадрат суммы раскроем по соответствующей формуле:
.
Ответ. 11.
Пример 2. Упростить выражение .
Решение. Учтем, что данное выражение имеет смысл не при всех возможных значениях переменной, т. к. в данном выражении присутствуют квадратные корни и дроби, что приводит к «сужению» области допустимых значений. ОДЗ: ().
Приведем выражение в скобках к общему знаменателю и распишем числитель последней дроби как разность квадратов:
при.
Ответ. при.
Пример 3. Упростить выражение .
Решение. Видно, что вторая скобка числителя имеет неудобный вид и нуждается в упрощении, попробуем разложить ее на множители с помощью метода группировки.
. Для возможности выносить общий множитель мы упростили корни путем их разложения на множители. Подставим полученное выражение в исходную дробь:
. После сокращения дроби применяем формулу разности квадратов.
Ответ. 13.
Пример на избавление от иррациональности
Пример 4. Освободиться от иррациональности (корней) в знаменателе: а) ; б) .
Решение. а) Для того чтобы избавиться от иррациональности в знаменателе, применяется стандартный метод домножения и числителя и знаменателя дроби на сопряженный к знаменателю множитель (такое же выражение, но с обратным знаком). Это делается для дополнения знаменателя дроби до разности квадратов, что позволяет избавиться от корней в знаменателе. Выполним этот прием в нашем случае:
.
б) выполним аналогичные действия:
.
Ответ.; .
Пример на доказательство и на выделение полного квадрата в сложном радикале
Пример 5. Докажите равенство .
Доказательство. Воспользуемся определением квадратного корня, из которого следует, что квадрат правого выражения должен быть равен подкоренному выражению:
. Раскроем скобки по формуле квадрата суммы:
, получили верное равенство.
Доказано.
Пример 6. Упростить выражение .
Решение. Указанное выражение принято называть сложным радикалом (корень под корнем). В данном примере необходимо догадаться выделить полный квадрат из подкоренного выражения. Для этого заметим, что из двух слагаемых является претендентом на роль удвоенного произведения в формуле квадрата разности (разности, т. к. присутствует минус). Распишем его в виде такого произведения: , тогда на роль одного из слагаемых полного квадрата претендует , а на роль второго – 1.
. Подставим это выражение под корень:
. Модуль раскрывается в таком виде, т. к. .
Ответ..
На этом занятии мы заканчиваем тему «Функция . Свойства квадратного корня», а на следующем уроке начинаем новую тему «Действительные числа».
Список литературы
1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.
2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.
3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
1. Интернет-портал xenoid.ru (Источник).
2. Математическая школа (Источник).
3. Интернет-портал XReferat.Ru (Источник).
Домашнее задание
1. №357, 360, 372, 373, 382. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.
2. Избавьтесь от иррациональности в знаменателе: а) , б) .
3. Упростите выражение: а) , б) .
4. Докажите тождество .