Математика

Тема 7: Квадратные уравнения

Урок 5: Решение задач с помощью дробных рациональных уравнений

  • Видео
  • Тренажер
  • Теория
Заметили ошибку?

Решение задач с помощью дробных рациональных уравнений.

Напомним, что рациональные уравнения – это уравнения, у которых левая и правая части являются рациональными выражениями. Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называют дробным.

Очень часто решение задач сводится к решению дробных рациональных уравнений. Решим несколько задач, которые сводятся к решению таких уравнений.

Задача 1. Числитель дроби на 3 меньше её знаменателя. Сумма дроби и обратной ей дроби в 7,25 раза больше исходной дроби. Найти исходную дробь.

Решение: обозначим за хзнаменатель дроби. Тогда (х-3) – числитель этой дроби. Значит, исходная дробь имеет вид х-3х. Так как по условию задачи сумма дробих-3хи обратной ей дробихх-3 в 7,25 раза больше исходной дроби, то можем составить уравнение:

x-3x+xx-3=7,25x-3x

Представим 7,25 в виде неправильной дроби:

x-3x+xx-3=29(x-3)4x

Умножим обе части уравнения на 4x(x-3) при x0, x3, чтобы избавиться от знаменателей:

4x-3x-3+4x2=29(x-3)(x-3)

4x2-24x+36+4x2=29x2-174x+261

21x2-150x+225=0

D=(-150)2-421225=3600

D=60

x1=--150-60221=9042=157 не соответствует условию задачи.

x2=--150+60221=21042=5

Значит, 5 – знаменатель, 5-3 = 2 – числитель.

Ответ: 25 – исходная дробь.

Задача 2. Велосипедисту надо проехать 30 км. Он выехал на полчаса позже намеченного срока и, чтобы приехать вовремя, увеличил скорость на 2 км/ч. С какой скоростью ехал велосипедист?

Пусть х (км/ч) – скорость велосипедиста. Тогда расстояние в 30 км велосипедист проедет за 30х часов. Если бы велосипедист выехал вовремя, то его скорость была бы равна (х-2) км/ч. И тогда расстояние в 30 км он проехал бы за 30х-2 часов. По условию задачи, велосипедист выехал на 30 минут позже намеченного срока, или, что тоже самое, на 3060=12 часа позже. Составим уравнение:

30x-2-30x=12

Умножим обе части уравнения на 2x(x-2) при x0, x2, чтобы избавиться от знаменателей:

302x-302x-2=x(x-2)

60x-60x+120=x2-2x

x2-2x-120=0

D=(-2)2-41-120=4+480=484

D=484=22

x1=--2-222=-10 не соответствует условию задачи.

x2=--2+222=12

Ответ: 12 км/ч.

Задача 3. Лодка прошла вниз по реке 42 км, а затем 27 км против течения, затратив на весь путь 15 часов. Найти скорость течения реки, если скорость моторной лодки в стоячей воде равна 5 км/ч.

Пусть х (км/ч) – скорость течения реки. Тогда (5+х) км/ч скорость моторной лодки по течению реки и (5-х) км/ч скорость моторной лодки против течения. Известно, что моторная лодка прошла по течению реки 42 км, а значит, затратила на это расстояние 425+х часов. Затем против течения лодка прошла 27 км, затратив на это расстояние 275-х часов. По условию известно, что на весь путь моторная лодка затратила 15 часов. Составим уравнение:

425+x+275-x=15

Умножим обе части уравнения на (5+x)(5-x) при x-5, x5, чтобы избавиться от знаменателей:

425-x+275+x=15(5+x)(5-x)

210-42x+135+27x=375-15x2

5x2-5x-10=0

x2-x-2=0

По теореме Виета

x1+x2=1x1x2=-2

Следовательно, x1=-1; x2=2.

Ответ: 2 км/ч