Математика
Тема 17: Окружность и векторы. Профильный уровеньУрок 2: Центральный угол. Градусная мера дуги окружности
- Видео
- Тренажер
- Теория
Основные определения
Напомним определение окружности. Сейчас мы дадим определение с ошибкой, задача – найти эту ошибку.
Определение:
Окружностью с центром в точке О и радиусом R называют множество точек плоскости, удаленных от одной точки – центра окружности О – на расстояние R.
Очевидно, что ошибка – пропущенное важное слово всех, то есть окружность – множество всех точек, равноудаленных от ее центра.
Например, вершины A, B, C, D квадрата – это множество точек, равноудаленных от центра квадрата, но это не есть окружность (рис. 1).
Рис. 1. Квадрат
Вспомним важные элементы окружности:
Дуга ;
Угол – центральный угол;
Точка О – центр окружности.
Имеем дугу и соответствующий центральный угол (рис. 2).
Рис. 2. Элементы окружности
Понятие градусной меры дуги
Рассмотрим понятие градусной меры дуги.
Задана окружность с центром О. Дуга ALB не больше полуокружности; дуга AМB больше полуокружности.
Градусной мерой дуги ALB называется градусная мера соответствующего центрального угла – .
Для дуги, большей полуокружности, градусной мерой будет следующая разность:
(рис. 3).
Рис. 3. Градусная мера дуги
Две дуги и
вместе составляют целую окружность, запишем это:
Таким образом, градусная мера окружности – это .
Решение примеров
Задана окружность с центром О, диаметром АВ, радиусом, перпендикулярным диаметру, ОС, радиусом ОМ, который составляет с ОС угол .
Дуга – пол-окружности;
Дуга – четверть окружности, угол
прямой;
Дуга ;
Дуга состоит из двух дуг, ее градусная мера равна сумме градусных мер двух дуг:
;
Дуга больше полуокружности, значит, ее градусная мера – это разность:
.
Рис. 4. Иллюстрация к примерам
Каждая дуга стягивается своей хордой, во многих задачах требуется найти длину этой хорды.
Пример:
Радиус окружности с центром О – 16 см. Найдите хорду АВ, если:
а)
б)
в)
Решение:
Итак, в случае а . Треугольник
равнобедренный, стороны ОА и ОВ равны как радиусы окружности. Углы при основании равны и сумма их равна
, значит, на каждый из углов приходится
, таким образом, в треугольнике
все углы составляют
, а значит, этот треугольник равносторонний и сторона АВ равна также радиусу окружности, то есть 16 см (рис. 5).
Рис. 5. Иллюстрация к случаю а
В случае б центральный угол составляет
. Рассмотрим прямоугольный равнобедренный треугольник
и применим теорему Пифагора, чтобы найти его гипотенузу:
. Нашли
см (рис. 6).
Рис. 6. Иллюстрация к случаю б
В случае в , значит, в данном случае АВ является диаметром окружности. Мы знаем, что диаметр равен двум радиусам, радиус нам известен. Таким образом,
см (рис. 7).
Рис. 7. Иллюстрация к случаю в
Выводы по уроку
Итак, мы узнали, что такое центральный угол, познакомились с понятием градусной меры дуги окружности. На следующем уроке мы изучим вписанный угол и теорему о нем.
Список литературы
- Александров А.Д. и др. Геометрия 8 класс. – М.: Просвещение, 2006.
- Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия 8. – М.: Просвещение, 2011.
- Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Домашнее задание
- Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др., Геометрия 7–9, № 649, № 651, № 652, с. 73.