Наука о данных
Тема 3: Модуль 3: как обучаются алгоритмыУрок 1: Как обучаются алгоритмы и от чего это зависит
- Видео
- Тренажер
- Теория
В этом модуле вы узнаете, как ваша бизнес-цель и данные:
- влияют на выбор подхода к обучению модели;
- превращаются в одну из трех основных задач машинного обучения.
А главное, вы научитесь самостоятельно понимать, подходят ли имеющиеся у вас данные под задачу, которую вы хотите решить. Это значительно улучшит взаимопонимание с дата-саентистом.
Как обучаются алгоритмы и от чего это зависит
Ваши данные должны содержать достаточно ценной информации, отвечающей условиям задачи. Иначе велик шанс, что на вопрос о том, кому еще мы можем предложить наш продукт, модель выдаст многозначительное: «42».
То, какие данные вы накопили в своем проекте, и то, что вы можете достать внутри компании или у партнеров, зависит от вас, а не от дата-саентиста. Согласитесь, вы не можете прийти к строителю с грудой досок и попросить построить из них каменный дворец. Аналогично нельзя требовать от специалиста по данным додумать то, чего нет в ваших данных. Поэтому так важно хотя бы базово понимать, как ваши ресурсы соотносятся с вашими возможностями и какие подходы обеспечат нужный результат.
Разобраться в подходах к машинному обучению довольно просто: изучите эту сравнительную таблицу — и вы лучше поймете, выполнима ли задача, которую вы описали в предыдущем модуле, на данных, которые у вас есть.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Это интересно! Мы не будем рассматривать этот аспект в курсе, но если вы сталкивались с новостями «ИИ обыграл человека в игру го», «ИИ научился проходить компьютерную игру не хуже человека» либо просто интересуетесь темой беспилотных автомобилей, то вам будет любопытно узнать, что для решения таких задач используется отдельный вид обучения с учителем — обучение с подкреплением. В этом случае алгоритм погружается в виртуальную среду и взаимодействует с ней, получает «подкрепление» (поощрение за верные ответы или штраф за неверные) и постепенно учится сводить свои ошибочные решения к минимуму.