Физика

Тема 12: Электромагнитные явления. Повторение

Урок 6: Электрический ток в металлах. Действия электрического тока. Направление тока

  • Видео
  • Тренажер
  • Теория
Заметили ошибку?

Структура металлов

 

На предыдущих уроках мы изучили практически все понятия, связанные с возникновением электрического тока: электрические заряды, электрическое поле, источники тока, простейшие электрические цепи и электрические схемы. Теперь нам предстоит выяснить, как течёт электрический ток в металлах, какие действия оказывает электрический ток, а также направление тока.

 

Металлы, как мы выяснили из экспериментов на предыдущих уроках, хорошо проводят электрический ток. Для того чтобы пояснить этот факт, зададимся вопросом: а что же такое металлы?

Металлы, как правило, – это поликристаллические вещества (состоящие из множества кристаллов) (рис. 1-2).

Рис. 1. Металлы (Источник) Рис. 2. Структура железа (Источник)

 

Движение электронов в металлах до появления электрического поля

 

 

То есть, в металлах мы имеем дело с упорядоченной структурой атомов: каждый атом находится на своём конкретном месте.

 

Как мы уже знаем, вокруг ядра атомов движутся электроны.

Что же даёт возможность появления свободных электрических зарядов?

Дело в том, что дальние электроны (те, которые находятся на самых удалённых от ядра орбитах) довольно слабо связаны с ядром. Поэтому они могут довольно легко переходить от одного атома к другому. Такое беспорядочное движение электронов чем-то напоминает электронный газ. Если внутри металла нет электрического поля, то движение этих свободных электронов чем-то напоминает движение поднятого в воздух роя мошкары в летний день (рис. 3).

Рис. 3. Движение электронов внутри металлического проводника (Источник)

 

Движение электронов в металлах после появления электрического поля

 

 

Всё изменяется, когда внутри металла появляется электрическое поле. Электрическое поле заставляет двигаться заряженные частицы. Ядра атомов остаются на месте, а вот электроны начинают упорядоченно двигаться.

 

 

Электрический ток в металлах

 

 

Электроны, перескакивая от одного атома к другому, движутся в том направлении, куда им указывает электрическое поле. Это движение и называется электрическим током в металлах.

 

Мы знаем, что электрический ток – это направленное, упорядоченное движение заряженных частиц. В металлах в роли движущихся заряженных частиц выступают электроны. В других веществах это могут быть ионы или ионы и электроны.

Движение заряженных частиц (в металлах – электронов) происходит очень медленно (доли миллиметров в секунду). Возникает вопрос: почему же, когда мы нажимаем на выключатель, лампочка загорается практически мгновенно?

Дело в том, что внутри проводников с огромной скоростью (со скоростью света – приблизительно 300 000 километров в секунду) распространяется электрическое поле.

При замыкании цепи поле распространяется практически мгновенно. А уже вслед за полем начинают медленно двигаться электроны, причём сразу по всей цепи. Эту ситуацию можно сравнить с движением воды в водопроводе. Воду заставляет двигаться давление в трубах, которое при открытии крана распространяется практически мгновенно, заставляя «ближайшую» к крану воду выливаться. При этом по трубам движется вся вода под этим самым давлением. Получается, что давление – это аналог электрического поля, а вода – аналог электронов. Как только прекращается действие электрического поля, сразу прекращается упорядоченное движение электрических зарядов.

 

Опыт Рикке

 

 

Возникает логичный вопрос: а не изменяется ли проводник из-за того, что из него «ушли» электроны? Опыт по подтверждению того, что все электроны одинаковые, был проведён немецким учёным Рикке (рис. 4) тогда, когда на трамвайных линиях использовали три разных проводника: алюминиевый и два медных.

 

Рис. 4. Карл Виктор Рикке (Источник)

Рикке в течение года наблюдал за последовательным соединением трёх проводников: медь + алюминий + медь. Поскольку ток в трамвайных линиях течёт довольно большой, то эксперимент позволял дать однозначный ответ: одинаковы ли электроны, которые являются носителями отрицательного заряда в разных проводниках.

За год масса проводников не изменилась, диффузии не произошло, то есть структура проводников осталась неизменной. Из этого следовал вывод, что электроны могут переходить из одного проводника в другой, но структура их при этом не изменится.

 

Действия тока

 

 

Поговорим теперь о том, какое действие оказывает электрический ток. За счёт чего он получил такое широкое применение в быту и технике?

 

Можно выделить три основных действия электрического тока:

1. Тепловое. При прохождении тока проводник нагревается. Это одно из самых главных действий тока, которое используется человеком. Самый простой пример – некоторые бытовые обогреватели (рис. 5).

Рис. 5. Электрообогреватель (Источник)

2. Химическое. Проводник может изменять химический состав при прохождении по нему тока. В частности, при помощи электрического тока добывают некоторые металлы в чистом виде, выделяя их из различных соединений. К примеру, таким образом получают алюминий (рис. 6).

Рис. 6. Электролизный цех алюминиевого завода (Источник)

3. Магнитное. Если по проводнику течёт ток, то магнитная стрелка вблизи такого проводника изменит своё положение.

 

Направление тока

 

 

Теперь поговорим о направлении электрического тока.

 

За направление электрического тока принимается направление движения положительных электрических зарядов.

Но только что мы говорили о том, что ток в металлах создают движущиеся электроны, которые имеют отрицательный заряд. Почему же возникает такое противоречие?

Когда возник вопрос о направлении электрического тока, ещё никто не знал о существовании электронов. Было решено считать, что ток движется в направлении движения положительных зарядов. Прошло время, учёные выяснили, что в металлах, в частности, движутся электроны, но было решено оставить всё в прежнем виде. Это связано с тем, что знак заряда нас практически не интересует, гораздо больше нас интересует само действие тока.

Движение электронов в проводнике противоположно направлению электрического поля (рис. 7).

Рис. 7. Движение электронов в проводнике (Источник)

На этом уроке мы выяснили, как течёт ток в металлах, узнали о действиях электрического тока, а также определили направление тока.

На следующем уроке мы начнём знакомиться с числовыми характеристиками тока.

                       

Список литературы

  1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. – М.: Мнемозина.
  2. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. – М.: Просвещение.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Фестиваль педагогических идей «Открытый урок» (Источник)
  2. Фестиваль педагогических идей «Открытый урок» (Источник)
  3. Фестиваль педагогических идей «Открытый урок» (Источник)

 

Домашнее задание

  1. П. 34–36, вопросы 1–4, стр. 81, вопросы 1–7, стр. 83, вопросы 1–3, стр. 84. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  2. В каких устройствах используется тепловое действие тока? Магнитное действие?
  3. Какие действия тока можно наблюдать, пропуская ток через морскую воду?

 

Электрический ток в металлах. Действия электрического тока.Направление тока (физика 8 класс)