Физика
Тема 14: Строение атома и атомного ядра. Использование энергии атомных ядерУрок 4: Экспериментальные методы исследования частиц
- Видео
- Тренажер
- Теория
Тема: Строение атома и атомного ядра. Использование энергии атомных ядер
Урок 54. Экспериментальные методы исследования частиц
Ерюткин Евгений Сергеевич
Данный урок будет посвящен обсуждению экспериментальных методов регистрации частиц. Ранее мы говорили о том, что в начале ХХ века появился инструмент, с помощью которого можно изучать строение атома и строение ядра. Это a-частицы, которые образуются в результате радиоактивного распада.
Сцинтилляционный метод
Чтобы регистрировать те частицы и излучения, которые образуются в результате ядерных реакций, нужны какие-то новые методы, отличные от использующихся в макромире. Кстати, в опытах Резерфорда уже использовался один такой метод. Он называется методом сцинтилляций (вспышек). В 1903 г. было обнаружено, что если a-частица попадает на сернистый цинк, то в том месте, куда она попала, возникает небольшая вспышка. Это явление и было положено в основу сцинтилляционного метода.
Этот метод был все же несовершенен. Приходилось очень тщательно наблюдать за экраном, чтобы увидеть все вспышки, глаз уставал: ведь приходилось пользоваться микроскопом. Возникла необходимость в новых способах, которые давали бы возможность более четко, быстро и достоверно регистрировать те или иные излучения.
Счётчик Гейгера – Мюллера
Такой способ впервые бы предложен сотрудником лаборатории, которой руководил Резерфорд, – Гейгером. Он создал прибор, способный «считать» заряженные частицы, попадающие в него, т.н. счетчик Гейгера. После того как немецкий ученый Мюллер усовершенствовал этот самый счетчик, он стал называться счетчиком Гейгера – Мюллера.
Как же он устроен? Счетчик этот газоразрядный, т.е. работает по такому принципу: внутри этого самого счетчика, в главной его части, образуется газовый разряд при пролете частицы. Напомню, что разряд – это протекание электрического тока в газе.
Стеклянный баллон, внутри которого расположены анод и катод. Катод представлен в виде цилиндра, а внутри этого цилиндра протянут анод. Между катодом и анодом за счет источника тока создается достаточно высокое напряжение. Между электродами, внутри вакуумного баллона находится, как правило, инертный газ. Делается это специально, чтобы создать в дальнейшем тот самый электрический разряд. Кроме этого, в схеме присутствует высокое (R~109Ом) сопротивление. Нужно оно, чтобы погасить ток, протекающий в этой цепи. А работа счетчика происходит следующим образом. Как мы знаем, частицы, которые образуются в результате ядерных реакций, обладают достаточно большой проникающей способностью. Поэтому стеклянный баллон, внутри которого находятся указанные элементы, не представляет для них какой-либо преграды. В результате частица проникает внутрь этого газоразрядного счетчика, ионизирует газ, который находится внутри. В результате такой ионизации образуются энергичные ионы, которые в свою очередь сталкиваются и создают, сталкиваясь между собой, лавину заряженных частиц. Эта лавина заряженных частиц будет состоять из ионов отрицательных, положительно заряженных, а также из электронов. И когда проходит эта лавина, мы можем зафиксировать электрический ток. Это и даст нам возможность понять, что через газоразрядный счетчик прошла частица.
Удобен тем, что в одну секунду такой счетчик может регистрировать приблизительно 10000 частиц. После некоторого усовершенствования этот счетчик стал регистрировать еще и g-лучи.
Конечно, счетчик Гейгера – удобная вещь, которая дает возможность определить существование вообще радиоактивности. Однако определить параметры частицы, провести с этими частицами какие-либо исследования, счетчик Гейгера – Мюллера не позволяет. Для этого нужны совсем другие способы, совсем другие методы. Вскоре после создания счетчика Гейгера, появились такие методы, такие устройства. Одно из самых известных и распространенных – камера Вильсона.
Камера Вильсона
Обратите внимание на устройство камеры. Цилиндр, внутри которого располагается поршень, который может ходить вверх-вниз. Внутри на этом поршне находится темная ткань, смоченная спиртом и водой. Верхняя часть цилиндра закрыта прозрачным материалом, как правило, это достаточно плотное стекло. Над ним располагается фотоаппарат, чтобы производить фотографирование того, что будет происходить внутри камеры Вильсона. Чтобы все это было видно очень хорошо, с левой стороны производится подсветка. Через окошко, справа, направляется поток частиц. Эти частицы, попадая внутри в среду, которая состоит из воды и спирта, будут с частицами воды и частицами спирта взаимодействовать. Тут как раз и кроется самое интересное. Пространство между стеклом и поршнем заполнено парами воды и спирта, образующимися в результате испарения. Когда поршень резко опускается вниз, то давление понижается и пары, которые здесь находятся, приходят в очень неустойчивое состояние, т.е. готовы перейти в жидкость. Но поскольку в это пространство помещаются чистые спирт и вода, без примесей, то какое-то время (оно может быть и достаточно большим) такое неравновесное состояние сохраняется. В момент, когда в область такого перенасыщения попадают заряженные частицы, они и становятся теми центрами, на которых начинается конденсация пара. Причем, если попадают отрицательные частицы, они взаимодействуют с одними ионами, а если положительные – то с ионами другого вещества. Там, где эта частица пролетела, остается так называемый трек, проще говоря, след. Если камеру Вильсона теперь поместить в магнитное поле, то частицы, которые обладают зарядами, начинают в магнитном поле отклоняться. А дальше все очень просто: если частица положительно заряженная, то она отклоняется в одну сторону. Если отрицательная – в другую. Так мы можем определить знак заряд, а по радиусу того самого закругления, по которому частица движется, мы можем определить или оценить массу этой частицы. Теперь можно говорить о том, что мы можем получить полноценную информацию о частицах, из которых состоит то или иное излучение.
У камеры Вильсона есть один недостаток. Те самые треки, которые образуются в результате прохождения частиц, недолговечны. Каждый раз приходится снова готовить камеру, чтобы получить новую картину. Поэтому сверху над камерой и располагается фотоаппарат, который регистрирует те самые треки.
Пузырьковая камера
Естественно, камера Вильсона – это не последнее устройство, которое используют для регистрации частиц. В 1952 г. было изобретено устройство, которое получило название пузырьковой камеры. Принцип работы у нее примерно такой же, как у камеры Вильсона; только работа проводится с перегретой жидкостью, т.е. в состоянии, когда жидкость вот-вот готова закипеть. В этот момент через такую жидкость пролетают частицы, которые и создают центры образования пузырьков. Треки, образованные в такой камере, сохраняются гораздо дольше, и этим камера удобнее.
Метод толстослойных фотоэмульсий
В России был создан еще один метод наблюдения за радиоактивными различными частицами, распадами, реакциями. Это метод толстослойных фотоэмульсий. Частицы попадают в эмульсии, приготовленные определенным образом. Взаимодействуя с частицами эмульсий, они не просто создают треки, но треки, которые уже сами по себе представляют фотографию, которую мы получаем, когда фотографируем треки в камере Вильсона или в пузырьковой камере. Это гораздо удобнее. Но и здесь есть один важный недостаток. Чтобы фотоэмульсионный метод работал довольно долгое время, должно происходить постоянное проникновение, попадание образовавшихся новых частиц или излучений, т.е. регистрировать кратковременные импульсы таким способом проблематично.
Другие методы регистрации частиц
Можно говорить и о других методах: например, есть такой метод, как искровая камера. Там в результате протекания радиоактивных реакций по следу движения частицы образуются искры. Их тоже хорошо видно и легко регистрировать.
На сегодняшний день чаще всего используют полупроводниковые датчики, которые и компактны, и удобны, и дают достаточно хороший результат.
Заключение
О том, какие же открытия удалось сделать при помощи описанных выше методов, мы поговорим на следующем уроке.
Список дополнительной литературы
- Боровой А.А. Как регистрируют частицы (по следам нейтрино). «Библиотечка “Квант”». Вып. 15. М.: Наука, 1981
- Бронштейн М.П. Атомы и электроны. «Библиотечка “Квант”». Вып. 1. М.: Наука, 1980
- Кикоин И.К., Кикоин А.К. Физика: Учебник для 9 класса средней школы. М.: «Просвещение»
- Китайгородский А.И. Физика для всех. Фотоны и ядра. Книга 4. М.: Наука
- Мякишев Г.Я., Синякова А.З. Физика. Оптика Квантовая физика. 11 класс: учебник для углубленного изучения физики. М.: Дрофа