Физика

Тема 11: Законы взаимодействия и движения тел

Урок 11: Решение задач по теме «Прямолинейное равномерное и неравномерное движение»

  • Видео
  • Тренажер
  • Теория
Заметили ошибку?

Введение

 

Давайте рассмотрим две задачи, причем решение одной из них – в двух вариантах.

 

 

Задача на определение пройденного пути при равнозамедленном движении

 

 

Условие

 

Самолет, летящий со скоростью , совершает посадку. Время до полной остановки самолета . Необходимо определить длину взлетной полосы.

Рис. 1. К условию задачи 1

Решение

 надо перевести в СИ, т. обр. начальная скорость самолета при посадке . Необходимо заметить, что, когда самолет совершает посадку, его конечная скорость будет равна нулю.

На рисунке ускорение имеет направление против оси , тем самым мы должны понимать, что проекция ускорения на ось  будет иметь отрицательное значение.

В данном случае движение прямолинейное (в одну сторону), поэтому модуль перемещения равен пройденному пути и определяется по формуле Галилея:

Чтобы решить окончательно эту задачу, надо определить ускорение:

Обратите внимание, что ускорение получилось со знаком минус. В данном случае мы понимаем, что движение замедленное. Скорость с течением времени уменьшается.

Стоит сделать акцент на том, что в решении мы не использовали обозначение векторов. Вспомните: в начале рассуждения мы уже нарисовали рисунок, где точно поставили направление векторных величин, связанных с выбранной системой отсчета, т. е. с осью . Подставляем в формулу, в уравнение движения Галилея, все нам известные величины: 

Ответ: 

 

Задача на комбинацию различных видов движения

 

 

Вторая задача, которую мы рассмотрим, несколько сложнее.

 

Условие

Автобус начинает свое движение от остановки и за  увеличивает свою скорость до . Затем  автобус едет с постоянной скоростью и перед светофором тормозит, останавливается, до полной остановки движется в течение . Определите полный пройденный путь этим автобусом.

Рис. 2. К условию задачи 2

Решение задачи мы начинаем с того, что определим первый участок пути, т. е. тот, на котором автобус разгоняется. Обозначим его как и вычислять мы будем его по уравнению Галилея. Записывается оно следующим образом:

Чтобы вычислить  , требуется обязательно знать ускорение. Ускорение обозначим .

Движение начинается от остановки, это означает, что начальная скорость . Найдем ускорение, не забыв перевести значение скорости в СИ:

Вычисляем теперь пройденный путь . С учетом того, что , формула приобретает вид:  .

Если теперь подставить сюда все известные значения, то мы получаем значение: .

Итак, первый этап: автобус разогнался от  до , пройдя расстояние .

Следующая часть посвящена равномерному движению, когда автобус движется равномерно в течение , и замедленному движению, когда автобус начинает останавливаться. Определяем пройденное расстояние при равномерном прямолинейном движении. В этом случае .

Третий пункт – это момент остановки автобуса, т. е. расстояние, которое он проходит до остановки. Здесь   .

В этом уравнении, чтобы определить , требуется знать значение ускорения:

Это означает, что движение замедляется. Ускорение направлено против выбранной оси. Подставив все значения, мы получаем выражение для :

.

До полной остановки автобус проходит 50 м. Чтобы вычислить окончательный ответ, нужно все пройденные расстояния сложить:

Ответ:

 

Решение второй задачи графическим методом

 

 

Рассмотрим второй вид решения, так называемый графический способ решения. Вспомним, что площадь фигуры, ограниченная с одной стороны осью времени, а с другой стороны графиком скорости, есть пройденный путь.

 

Нарисуем график зависимости скорости автобуса от времени. В течение 5 c скорость автобуса увеличивается от 0 до 10 м/с. Затем 20 с, т. е. от 5 до 25 с, скорость постоянна и равна 10 м/с. Затем в течение 10 с, т. е. от 25 до35 с, автобус останавливается.

Рис. 3. График зависимости скорости от времени (задача 2)

Полученная фигура – это трапеция. Из математики вы помните, что площадь трапеции определяется как полусумма оснований, умноженная на высоту. Это . В нашем случае .

Обратите внимание, что ответ при двух вариантах решения одинаковый. Следовательно, решение задачи может быть как аналитическим, так и графическим.

 

Заключение

 

 

Данный урок был завершающим в курсе кинематики. На следующем уроке мы приступим к изучению взаимодействия тел.

 

 

Список литературы

  1. Кикоин И.К., Кикоин А.К. Физика: учебник для 9 класса средней школы. – М.: Просвещение.
  2. Соколович Ю.А., Богданова Г.С. Физика: Справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
  3. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений/А.В. Перышкин, Е.М. Гутник. – 14-е изд., стереотип. – М.: Дрофа, 2009. – 300.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «yaklass.ru» (Источник)

 

Домашнее задание

  1. Велосипедист проехал первую половину пути со скоростью 10 км/ч, а вторую – 15 км/ч. Определите среднюю скорость на всем участке пути.
  2. Автомобиль, который двигался со скоростью 20 м/с, начал тормозить и остановился спустя 10 с. Определите перемещение автомобиля за время торможения (торможение происходило с постоянным ускорением).
  3. Лыжник из состояния покоя начинает спускаться с горки с постоянным ускорением 0,1 м/с2.
  4. Спустя некоторое время его скорость возросла до 3 м/с. Определите это время.

 

Видеоурок: Решение задач по теме «Прямолинейное равномерное и неравномерное движение» по предмету Физика за 9 класс.