Математика
Тема 16: Многогранники. Профильный уровеньУрок 8: Площадь поверхности пирамиды
- Видео
- Тренажер
- Теория
Пирамида, основные понятия и элементы
Вспомним понятие n-угольной пирамиды. Она получается следующим образом: в плоскости лежит n-угольник с вершинами и т. д. Вне плоскости лежит точка Р. Точка Р соединяется с вершинами n-угольника – получаем пирамиду (рисунок 1).
Определение.
Многогранник , составленный из n-угольника и n треугольников , … называется пирамидой.
Площадь поверхности пирамиды состоит из площади боковой поверхности и площади основания:
Площадь основания пирамиды, площади основных правильных многоугольников
Рассмотрим нахождение площади основания правильной n-угольной пирамиды. Правильный n-угольник, как нам известно, имеет равные стороны и равные внутренние углы. Решим следующую задачу: для n-угольника с заданной длиной стороны () и количеством углов (n) найти площадь (рисунок 2).
Рассмотрим треугольник , в нем найдем угол . Таких углов всего n штук, значит:
Половина этого угла, угол .
Треугольник , где М – середина стороны , прямоугольный. В нем ОМ – радиус вписанной в n-угольник окружности, – радиус описанной окружности. Поскольку у нас задан по условию катет рассматриваемого прямоугольного треугольника () и мы нашли острый угол (), то по соотношениям в прямоугольном треугольнике мы легко найдем все остальные элементы.
Чтобы найти площадь n-угольника, нужно сложить n площадей треугольников вида . Чтобы найти площадь этого треугольника, найдем катет ОМ прямоугольного треугольника :
Площадь треугольника определяется по формуле:
Теперь получим площадь всего n-угольника:
Рассмотрим наиболее распространенные частные случаи:
Площадь правильного треугольника:
Площадь квадрата:
Площадь правильного шестиугольника:
Чтобы нарисовать правильный шестиугольник, удобно пользоваться следующим алгоритмом (рисунок 3):
Построить окружность (зеленая пунктирная линия) Провести диаметр (синяя пунктирная линия) Отметить середины радиусов построенного диаметра Провести через середины перпендикуляры (красные пунктирные линии) Получены вершины шестиугольника – построить шестиугольник.
Чтобы найти площадь правильного шестиугольника действуем стандартным методом. Рассматриваем треугольник АОС, в нем находим угол ∠АОВ, таких углов шесть, имеем:
Поскольку отрезки ОА и ОВ равны, то углы ∠ОАВ и ∠ОВА также составляют по . Так, рассматриваемый треугольник правильный. Его площадь нам известна:
Площадь шестиугольника состоит из шести таких площадей:
Площадь боковой поверхности пирамиды
Рассмотрим нахождение площади боковой поверхности правильной пирамиды.
Где – периметр основания; – апофема.
Определение.
Апофема – высота боковой грани правильной пирамиды, проведенная из ее вершины.
Задача 1
В правильной треугольной пирамиде известна сторона основания и высота. Найти площадь боковой поверхности.
Решение. Проиллюстрируем условие задачи:
Задана правильная пирамида с вершиной Р и основанием АВС. РН – высота пирамиды, РО – апофема. Сторона основания равняется . высота равняется . Высота и сторона основания полностью задают правильную пирамиду.
По вышеприведенной формуле для того, чтобы найти площадь боковой поверхности пирамиды, необходимо найти ее апофему и полупериметр основания. Периметр основания нам известен, так как задана сторона основания. Найдем апофему из прямоугольного треугольника РНО. Один из катетов задан по условию – . Найдем второй катет ОН, он соответствует радиусу вписанной в треугольник окружности, формула нам известна:
Найдем апофему по теореме Пифагора:
Теперь можем найти площадь боковой поверхности пирамиды:
Связь площади треугольника с площадью его проекции
Площадь боковой поверхности и площадь основания пирамиды связаны через величину двугранного угла при основании.
Решение задач
Задача 2
РН – перпендикуляр к плоскости треугольника АВН. Из точки Н опущен перпендикуляр НМ к прямой АВ. . Доказать:
Решение. Проиллюстрируем условие:
Треугольник АВН – это проекция треугольника АВР. Нужно доказать, что площадь проекции есть площадь исходного треугольника на косинус двугранного угла между ними. Поскольку НМ – перпендикуляр к АВ, то и РМ – перпендикуляр к АВ по теореме о трех перпендикулярах. Значит, угол – это линейный угол двугранного угла с ребром АВ. АВР – часть боковой поверхности, АВН – часть основания.
Найдем отношение площадей интересующих нас треугольников:
Рассмотрим прямоугольный треугольник РНМ. В нем РМ – гипотенуза, НМ – катет, прилежащий к заданному углу . Отсюда заключаем:
Что и требовалось доказать.
Задача 3
Доказать для правильной треугольной пирамиды: , где – угол наклона боковой грани к основанию.
Решение. Проиллюстрируем условие:
Задана правильная треугольная пирамида РАВС с основанием АВС и вершиной Р. – линейный угол двугранного угла с ребром АВ, точкой Р в одной плоскости и точкой С в другой плоскости.
Очевидно, что угол наклона боковой грани к основанию пирамиды одинаков для всех боковых граней, то есть если и – середины отрезков ВС, АС и АВ соответственно, то: .
В задаче 2 мы доказали: .
Аналогично:
Выполним сложение полученных выражений.
Что и требовалось доказать.
Задача 4
Боковые грани пирамиды РАВС наклонены к основанию под одним и тем же углом . Докажите, что вершина пирамиды Р проектируется в центр О вписанной в треугольник АВС окружности и что .
Решение. Проиллюстрируем условие задачи:
Пусть РО – высота пирамиды. Найдем место расположения точки О. Из точки О опустим перпендикуляры к сторонам треугольника АВС – .
Поскольку – перпендикуляр к АВ, то по теореме о трех перпендикулярах . Аналогично: и . Тогда – линейный угол двугранного угла при ребре АВ, – линейный угол двугранного угла при ребре ВС, – линейный угол двугранного угла при ребре АС. По условию . Так, имеем равные прямоугольные треугольники: (по общему катету и равному острому углу). Из равенства треугольников следует равенство катетов: .
Так, точка О равноудалена от сторон треугольника АВС, то есть это центр его вписанной окружности, что и требовалось доказать.
Поскольку РО – высота пирамиды, то треугольники АОВ, АОС, СОВ – это проекции треугольников АРВ, АРС и ВРС соответственно. Имеем (основываясь на задаче 2):
Выполним сложение полученных выражений.
Что и требовалось доказать.
Итак, мы рассмотрели площадь поверхности пирамиды, в частности, площадь основания и площадь боковой поверхности, следующий урок будет посвящен задачам.
Список литературы
- И. М. Смирнова, В. А. Смирнов. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е изд., испр. и доп. – М.: Мнемозина, 2008. – 288 с.: ил.
- Шарыгин И. Ф. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. – М.: Дрофа, 1999. – 208 с.: ил.
- Е. В. Потоскуев, Л. И. Звалич. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. – 6-е изд., стереотип. – М.: Дрофа, 2008. – 233 с.: ил.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Домашнее задание
- Задача 1: основанием пирамиды является квадрат, одно из боковых ребер перпендикулярно основанию. Плоскость боковой грани, не проходящей через высоту пирамиды, наклонена к плоскости основания под углом . Наибольшее боковое ребро равно 12 см. Найдите высоту пирамиды и площадь боковой поверхности.
- Задача 2: основанием пирамиды DABC является прямоугольный треугольник АВС, у которого гипотенуза АВ – 29 см, катет АС – 21 см. Боковое ребро DA перпендикулярно плоскости основания и равно 20 см. Найдите площадь боковой поверхности пирамиды.
- Задача 3: основанием пирамиды является прямоугольник, диагональ которого равна 8 см. Плоскости двух боковых граней перпендикулярны к плоскости основания, а две другие боковые грани образуют с основанием углы и . Найдите площадь поверхности пирамиды.