Математика
Тема 13: Треугольники. Профильный уровеньУрок 8: Равнобедренный треугольник и его свойства
- Видео
- Тренажер
- Теория
Определение равнобедренного треугольника
Определение: Равнобедренным называется треугольник, у которого равны две стороны.
АВ = АС – боковые стороны. ВС – основание.
Площадь равнобедренного треугольника равна половине произведения его основания на высоту.
Определение равностороннего треугольника
Определение: Равносторонним называется треугольник, у которого все три стороны равны.
АВ = ВС = СА.
Теорема о равенстве углов при основании равнобедренного треугольника
Теорема 1: В равнобедренном треугольнике углы при основании равны.
Дано: АВ = АС.
Доказать: ∠В =∠С.
Доказательство: треугольник АВС = треугольнику АСВ по первому признаку (по двум равным сторонам и углу между ними). Из равенства треугольников следует равенство всех соответствующих элементов. Значит, ∠В = ∠С, что и требовалось доказать.
Теорема о биссектрисе (медиане, высоте), проведенной к основанию равнобедренного треугольника
Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
Дано: АВ = АС, ∠1 = ∠2.
Доказать: ВD = DC, AD перпендикулярно BC.
Доказательство: треугольник ADB = треугольнику ADC по первому признаку (AD – общая, АВ = АС по условию, ∠BAD = ∠DAC). Из равенства треугольников следует равенство всех соответствующих элементов. BD = DC, так как они лежат против равных углов. Значит, AD является медианой. Также ∠3 = ∠4, поскольку они лежат против равных сторон. Но, к тому же, они в сумме равняются . Следовательно, ∠3 = ∠4 = . Значит, AD является высотой треугольника, что и требовалось доказать.
В единственном случае a = b = . В этом случае прямые АС и ВD называются перпендикулярными.
Поскольку биссектрисой, высотой и медианой является один и тот же отрезок, то справедливы и следующие утверждения:
- Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
- Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.
Решение задач
Пример 1: В равнобедренном треугольнике основание в два раза меньше боковой стороны, а периметр равен 50 см. Найдите стороны треугольника.
Дано: АВ = АС, ВС = AC. Р = 50 см.
Найти: ВС, АС, АВ.
Решение:
Обозначим основание ВС как а, тогда АВ = АС = 2а.
2а + 2а + а = 50.
5а = 50, а = 10.
Ответ: ВС = 10 см, АС = АВ = 20 см.
Пример 2: Докажите, что в равностороннем треугольнике все углы равны.
Дано: АВ = ВС = СА.
Доказать: ∠А = ∠В = ∠С.
Доказательство:
∠В = ∠С, так как АВ=АС, а ∠А = ∠В, так как АС = ВС.
Следовательно, ∠А = ∠В = ∠С, что и требовалось доказать.
Ответ: Доказано.
На сегодняшнем уроке мы рассмотрели равнобедренный треугольник, изучили его основные свойства. На следующем уроке мы порешаем задачи по теме равнобедренного треугольника, на вычисление площадт равнобедренного и равностороннего треугольника.
Список рекомендованной литературы
- Александров А.Д., Вернер А.Л., Рыжик В.И. и др. Геометрия 7. – М.: Просвещение.
- Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия 7. 5-е изд. – М.: Просвещение.
- Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А. – М.: Просвещение, 2010.
Рекомендованные ссылки на интернет-ресурсы
- Словари и энциклопедии на «Академике» (Источник).
- Фестиваль педагогической идеи «Открытый урок» (Источник).
- Кaknauchit.ru (Источник).
Рекомендованное домашнее задание
1. № 29. Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А. – М.: Просвещение, 2010.
2. Периметр равнобедренного треугольника равен 35 см, а основа втрое меньше боковой стороны. Найдите стороны треугольника.
3. Дано: АВ = ВС. Докажите, что ∠1 = ∠2.
4. Периметр равнобедренного треугольника равен 20 см, одна из его сторон в два раза больше другой. Найдите стороны треугольника. Сколько решений имеет задача?