Математика
Тема 10: Алгебраические дроби. Профильный уровеньУрок 12: Возведение алгебраической дроби в степень
- Видео
- Тренажер
- Теория
Правила возведения дробей и целых выражений в натуральную степень с элементарными примерами
Правило возведения обыкновенных и алгебраических дробей в натуральную степень:
Можно провести аналогию со степенью целого выражения и вспомнить, что понимается под возведением его в степень:
Пример 1. .
Как видно из примера, возведение дроби в степень – это частный случай умножения дробей, что изучалось на предыдущем уроке.
Пример 2. а) , б) – минус уходит, т. к. мы возвели выражение в четную степень.
Ответ. ; .
Для удобства работы со степенями вспомним основные правила возведения в натуральную степень:
– произведение степеней;
– деление степеней;
– возведение степени в степень;
– степень произведения.
Пример 3. – это известно нам еще с темы «Возведение в степень целых выражений», кроме одного случая: не существует.
Простейшие примеры на возведение алгебраических дробей в натуральную степень
Далее рассмотрим примеры посложнее.
Пример 4. Возвести дробь в степень .
Решение. При возведении в четную степень минус уходит:
.
Ответ. .
Пример 5. Возвести дробь в степень .
Решение. Теперь пользуемся правилами возведения степени в степень сразу без отдельного расписывания:
.
Ответ..
Теперь рассмотрим комбинированные задачи, в которых нам будет необходимо и возводить дроби в степень, и умножать их, и делить.
Пример 6. Выполнить действия .
Решение. . Далее необходимо произвести сокращение. Распишем один раз подробно, как мы это будем делать, а затем будем указывать результат сразу по аналогии: . Аналогично (или по правилу деления степеней) . Имеем: .
Ответ. .
Пример 7. Выполнить действия .
Решение. . Сокращение осуществлено по аналогии с примером, разобранным ранее.
Ответ. .
Пример 8. Выполнить действия .
Решение. . В данном примере мы еще раз более подробно расписали процесс сокращения степеней в дробях, чтобы закрепить этот способ.
Ответ. .
Более сложные примеры на возведение алгебраических дробей в натуральную степень (с учетом знаков и со слагаемыми в скобках)
Пример 9. Выполнить действия .
Решение. В данном примере уже пропустим отдельное умножение дробей, а сразу воспользуемся правилом их умножения и запишем под один знаменатель. При этом следим за знаками – в указанном случае дроби возводятся в четные степени, поэтому минусы исчезают. В конце выполним сокращение.
.
Ответ..
Пример 10. Выполнить действия .
Решение. В данном примере присутствует деление дробей, вспомним, что при этом первая дробь умножается на вторую, но перевернутую.
.
Ответ. .
На данном уроке мы рассмотрели возведение дробей в натуральную степень. В дальнейшем умение это делать и осуществлять действия с дробями, изученными ранее, мы будем использовать для преобразования рациональных выражений.
Список литературы
1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.
2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.
3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
1. Портал для всей семьи(Источник).
2. Старая школа (Источник).
Домашнее задание
1. №76. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.
2. Возвести дроби в степень: а) , б) .
3. Возвести дроби в степень: а) , б) .
4. Возвести дроби в степень: а) , б) .
5. Выполнить действия: а) , б) .