Математика

Тема 10: Алгебраические дроби. Профильный уровень

Урок 16: Преобразование более сложных рациональных выражений

  • Видео
  • Тренажер
  • Теория
Заметили ошибку?

 

 

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

 

Урок: Преобразование более сложных рациональных выражений

 

1. Пример на доказательство тождества с помощью преобразований рациональных выражений

 

 

На этом уроке мы рассмотрим преобразование более сложных рациональных выражений. Первый пример будет посвящён доказательству тождества.

 

Пример 1

Доказать тождество: .

Доказательство:

В первую очередь при преобразовании рациональных выражений необходимо определиться с порядком действий. Напомним, что в первую очередь выполняются действия в скобках, затем умножение и деление, а затем уже сложение и вычитание. Поэтому в данном примере порядок действий будет таким: сначала выполним действие в первых скобках, затем во вторых скобках, затем поделим полученные результаты, а затем к полученному выражению добавим дробь. В результате этих действий, а также упрощения, должно получиться выражение .

Действие №1:         

Действие №2:         

Действие №3:         

Действие №4:         

Доказано

 

2. Пример на преобразование сложного рационального выражения

 

 

Рассмотрим теперь пример на упрощение рационального выражения.

 

Пример 2

Упростить выражение: .

Решение:

И снова нам необходимо определить порядок действий данного примера. Сначала необходимо выполнить действие в скобках. Затем полученное выражение поделить на дробь, которая стоит за скобками.

Действие №1:         

Действие №2:         

Ответ: .

Итак, мы рассмотрели более сложные случаи преобразования рациональных выражений. Все рассмотренные примеры и методы в дальнейшем нам очень пригодятся. Особенно полезны они будут при изучении рациональных уравнений, которые мы рассмотрим на следующем уроке.

 

Список литературы

1. Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Портал Естественных Наук (Источник).

2. Фестиваль педагогических идей «Открытый урок» (Источник).

3. Интернет-портал xenoid.ru (Источник).

4. Прикладная математика (Источник).

 

Домашнее задание

1. №№102-104. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

2. Выполнить действия: а), б) .

3. Выполнить действия: а) , б) .

4. Найти сумму: .

 

Видеоурок: Преобразование более сложных рациональных выражений по предмету Алгебра за 8 класс.