Математика
Тема 14: Четырёхугольники. Профильный уровеньУрок 12: Прямоугольник, ромб и квадрат. Осевая и центральная симметрии
- Видео
- Тренажер
- Теория
Симметрия точек относительно прямой
Данный урок посвящён осевой и центральной симметрии.
Определение
Две точки и называются симметричными относительно прямой , если:
1. прямая проходит через середину отрезка ;
2. прямая перпендикулярна отрезку.
На Рис. 1 изображены примеры симметричных относительно прямой точек и , и .
Отметим также тот факт, что любая точка прямой симметрична сама себе относительно этой прямой.
Симметричными относительно прямой могут быть и фигуры.
Сформулируем строгое определение.
Осевая симметрия, примеры
Определение
Фигура называется симметричной относительно прямой , если для каждой точки фигуры симметричная ей относительно этой прямой точка также принадлежит фигуре. В этом случае прямая называется осью симметрии. Фигура при этом обладает осевой симметрией.
Рассмотрим несколько примеров фигур, обладающих осевой симметрией, и их оси симметрии.
Пример 1
Угол обладает осевой симметрией. Осью симметрии угла является биссектриса. Действительно: опустим из любой точки угла перпендикуляр к биссектрисе и продлим его до пересечения с другой стороной угла (см. Рис. 2).
(так как – общая сторона, (свойство биссектрисы), а треугольники – прямоугольные). Значит, . Поэтому точки и симметричны относительно биссектрисы угла.
Из этого следует, что и равнобедренный треугольник обладает осевой симметрии относительно биссектрисы (высоты, медианы), проведённой к снованию.
Пример 2
Равносторонний треугольник обладает тремя осями симметрии (биссектрисы/медианы/высоты каждого из трёх углов (см. Рис. 3).
Пример 3
Прямоугольник обладает двумя осями симметрии, каждая из которых проходит через середины двух его противоположных сторон (см. Рис. 4).
Пример 4
Ромб также обладает двумя осями симметрии: прямые, которые содержат его диагонали (см. Рис. 5).
Пример 5
Квадрат, являющийся одновременно ромбом и прямоугольником, обладает 4 осями симметрии (см. Рис. 6).
Пример 6
У окружности осью симметрии является любая прямая, проходящая через её центр (то есть содержащая диаметр окружности). Поэтому окружность имеет бесконечно много осей симметрии (см. Рис. 7).
Центральная симметрия, примеры
Рассмотрим теперь понятие центральной симметрии.
Определение
Точки и называются симметричными относительно точки , если: – середина отрезка .
Рассмотрим несколько примеров: на Рис. 8 изображены точки и , а также и , которые являются симметричными относительно точки , а точки и не являются симметричными относительно этой точки.
Некоторые фигуры являются симметричными относительно некоторой точки. Сформулируем строгое определение.
Определение
Фигура называется симметричной относительно точки , если для любой точки фигуры точка, симметричная ей, также принадлежит данной фигуре. Точка называется центром симметрии, а фигура обладает центральной симметрией.
Рассмотрим примеры фигур, обладающих центральной симметрией.
Пример 7
У окружности центром симметрии является центр окружности (это легко доказать, вспомнив свойства диаметра и радиуса окружности) (см. Рис. 9).
Пример 8
У параллелограмма центром симметрии является точка пересечения диагоналей (см. Рис. 10).
Решение задач
Решим несколько задач на осевую и центральную симметрию.
Задача 1.
Сколько осей симметрии имеет отрезок ?
Решение:
Отрезок имеет две оси симметрии. Первая из них – это прямая, содержащая отрезок (так как любая точка прямой симметрична сама себе относительно этой прямой). Вторая – серединный перпендикуляр к отрезку, то есть прямая, перпендикулярная отрезку и проходящая через его середину.
Ответ: 2 оси симметрии.
Задача 2.
Сколько осей симметрии имеет прямая ?
Решение:
Прямая имеет бесконечно много осей симметрии. Одна из них – это сама прямая (так как любая точка прямой симметрична сама себе относительно этой прямой). А также осями симметрии являются любые прямые, перпендикулярные данной прямой.
Ответ: бесконечно много осей симметрии.
Задача 3.
Сколько осей симметрии имеет луч ?
Решение:
Луч имеет одну ось симметрии, которая совпадает с прямой, содержащей луч (так как любая точка прямой симметрична сама себе относительно этой прямой).
Ответ: одна ось симметрии.
Задача 4.
Доказать, что прямые, содержащие диагонали ромба, являются его осями симметрии.
Доказательство:
Рассмотрим ромб . Докажем, к примеру, что прямая является его осью симметрии. Очевидно, что точки и являются симметричными сами себе, так как лежат на этой прямой. Кроме того, точки и симметричны относительно этой прямой, так как . Выберем теперь произвольную точку и докажем, что симметричная ей относительно точка также принадлежит ромбу (см. Рис. 11).
Проведём через точку перпендикуляр к прямой и продлим его до пересечения с . Рассмотрим треугольники и . Эти треугольники прямоугольные (по построению), кроме того, в них: – общий катет, а (так как диагонали ромба являются его биссектрисами). Значит, эти треугольники равны: . Значит, равны и все их соответствующие элементы, поэтому: . Из равенства этих отрезков следует то, что точки и являются симметричными относительно прямой . Это означает, что является осью симметрии ромба. Аналогично можно доказать этот факт и для второй диагонали.
Доказано.
Задача 5.
Доказать, что точка пересечения диагоналей параллелограмма является его центром симметрии.
Доказательство:
Рассмотрим параллелограмм . Докажем, что точка является его центром симметрии. Очевидно, что точки и , и являются попарно симметричными относительно точки , так как диагонали параллелограмма точкой пересечения делятся пополам. Выберем теперь произвольную точку и докажем, что симметричная ей относительно точка также принадлежит параллелограмму (см. Рис. 12).
Соединим точку с точкой и продлим линию до пересечения с противоположной стороной. Рассмотрим треугольники и . Эти треугольники равны по второму признаку равенства треугольников (сторона и два угла). Действительно: (так как диагонали параллелограмма точкой пересечения делятся пополам), (как внутренние накрест лежащие при параллельных прямых), (как вертикальные углы). Значит, эти треугольники равны: . Значит, равны и все их соответствующие элементы, поэтому: . Из равенства этих отрезков следует то, что точки и являются симметричными относительно точки . Это означает, что является центром симметрии параллелограмма.
Доказано.
На этом уроке мы заканчиваем изучение темы «виды четырёхугольников» (параллелограмм, трапеция, прямоугольник, ромб, квадрат). Мы рассмотрели осевую и центральную симметрию и её примеры для различных геометрических фигур. Кроме того, были решены несколько задач на эту тему.
На следующих уроках мы перейдём к изучению новой темы: «Площадь».
Список литературы
- Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
- Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
- Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Фестиваль педагогических наук "Открытый урок" (Источник).
- Docme.ru (Источник).
- Ikt.oblcit.ru (Источник).
Домашнее задание
- № 59, 60. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
- Дан угол и точка , которая лежит внутри него. Построить угол, симметричный углу относительно точки .
- Постройте окружность радиусом . Проведите прямую, которая не проходит через центр окружности. Постройте окружность, симметричную данной относительно этой прямой.