Математика

Тема 17: Окружность и векторы. Профильный уровень

Урок 6: Свойства серединного перпендикуляра к отрезку. Точка пересечения биссектрис и точка пересечения серединных перпендикуляров треугольника

  • Видео
  • Тренажер
  • Теория
Заметили ошибку?

Теорема о пересечении биссектрис треугольника

 

На предыдущем уроке мы рассмотрели свойства биссектрисы угла как заключенного в треугольник, так и свободного. Треугольник включает в себя три угла и для каждого из них рассмотренные свойства биссектрисы сохраняются.

 

Теорема:

Биссектрисы АА1, ВВ1, СС1 треугольника  пересекаются в одной точке О (рис. 1).

Рис. 1. Иллюстрация к теореме

Доказательство:

Рассмотрим сначала две биссектрисы ВВ1 и СС1. Они пересекаются, точка пересечения О существует. Чтобы доказать это, предположим противное: пусть данные биссектрисы не пересекаются, в таком случае они параллельны. Тогда прямая ВС является секущей и сумма углов , это противоречит тому, что во всем треугольнике сумма углов .

Итак, точка О пересечения двух биссектрис существует. Рассмотрим ее свойства:

Точка О лежит на биссектрисе угла , значит, она равноудалена от его сторон ВА и ВС. Если ОК – перпендикуляр к ВС, OL – перпендикуляр к ВА, то длины этих перпендикуляров равны – . Также точка О лежит на биссектрисе угла  и равноудалена от его сторон CВ и СА, перпендикуляры ОМ и ОК равны.

Получили следующие равенства:

, то есть все три перпендикуляра, опущенные из точки О на стороны треугольника, равны между собой.

Нас интересует равенство перпендикуляров OL и ОМ. Это равенство говорит о том, что точка О равноудалена от сторон угла , отсюда следует, что она лежит на его биссектрисе АА1.

Таким образом, мы доказали, что все три биссектрисы треугольника пересекаются в одной точке.

Кроме того, треугольник состоит из трех отрезков, значит, нам следует рассмотреть свойства отдельного отрезка.

Задан отрезок АВ. У любого отрезка есть середина, и через нее можно провести перпендикуляр – обозначим его за р. Таким образом, р – серединный перпендикуляр.

 

Прямая теорема о серединном перпендикуляре

 

 

 

Рис. 2. Иллюстрация к теореме

Любая точка, лежащая на серединном перпендикуляре, равноудалена от концов отрезка.

Доказать, что  (рис. 2). 

Доказательство:

Рассмотрим треугольники  и . Они прямоугольные и равные, т. к. имеют общий катет ОМ, а катеты АО и ОВ равны по условию, таким образом, имеем два прямоугольных треугольника, равных по двум катетам. Отсюда следует, что гипотенузы треугольников тоже равны, то есть, , что и требовалось доказать.

Справедлива обратная теорема.

 

Обратная теорема о серединном перпендикуляре

 

 

Каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.

 

Задан отрезок АВ, серединный перпендикуляр к нему р, точка М, равноудаленная от концов отрезка. Доказать, что точка М лежит на серединном перпендикуляре к отрезку (рис. 3).

Рис. 3. Иллюстрация к теореме

Доказательство:

Рассмотрим треугольник . Он равнобедренный, так как  по условию. Рассмотрим медиану треугольника: точка О – середина основания АВ, ОМ – медиана. Согласно свойству равнобедренного треугольника, медиана, проведенная к его основанию, является одновременно высотой и биссектрисой. Отсюда следует, что . Но прямая р также перпендикулярна АВ. Мы знаем, что в точку О можно провести единственный перпендикуляр к отрезку АВ, значит прямые ОМ и р совпадают, отсюда следует, что точка М принадлежит прямой р, что и требовалось доказать.

Прямую и обратную теоремы можно обобщить.

 

Теорема о пересечении серединных перпендикуляров треугольника

 

 

Точка лежит на серединном перпендикуляре к отрезку тогда и только тогда, когда она равноудалена от концов этого отрезка.

 

Итак, повторим, что в треугольнике три отрезка и к каждому из них применимо свойство серединного перпендикуляра.

Теорема:

Серединные перпендикуляры треугольника пересекаются в одной точке.

Задан треугольник . Перпендикуляры к его сторонам: Р1 к стороне ВС, Р2 к стороне АС, Р3 к стороне АВ.

Доказать, что перпендикуляры Р1, Р2 и Р3 пересекаются в точке О (рис. 4).

Рис. 4. Иллюстрация к теореме

Доказательство:

Рассмотрим два серединных перпендикуляра Р2 и Р3, они пересекаются, точка пересечения О существует. Докажем этот факт от противного – пусть перпендикуляры Р2 и Р3 параллельны. Тогда угол  развернутый, что противоречит тому факту, что сумма трех углов треугольника составляет . Итак, существует точка О пересечения двух из трех серединных перпендикуляров. Свойства точки О: она лежит на серединном перпендикуляре к стороне АВ, значит, она равноудалена от концов отрезка АВ: . Также она лежит на серединном перпендикуляре к стороне АС, значит, . Получили следующие равенства:

      

Из данного равенства нас интересует тот факт, что , это значит, что точка О равноудалена от концов отрезка ВС, значит, она принадлежит серединному перпендикуляру к стороне ВС. Таким образом, точка О – точка пересечения трех серединных перпендикуляров треугольника , что и требовалось доказать.

 

Выводы по уроку

 

 

Итак, мы рассмотрели теорему о пересечении биссектрис треугольника. Сформулировали и доказали теорему о свойстве серединного перпендикуляра. Рассмотрели теорему о пересечении серединных перпендикуляров треугольника.

 

 

Список литературы

  1. Александров А.Д. и др. Геометрия 8 класс. – М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия 8. – М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Bymath.net (Источник).
  2. Oldskola1.narod.ru (Источник).

 

Домашнее задание

  1. Задание 1 – Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др., Геометрия 7–9, № 679–681, с. 180.
  2. Задание 2 – докажите, что если в треугольнике совпадают точка пересечения биссектрис и серединных перпендикуляров к сторонам, то он равносторонний;

 

Видеоурок: Свойства серединного перпендикуляра к отрезку. Точка пересечения биссектрис и точка пересечения серединных перпендикуляров треугольника по предмету Геометрия за 8 класс.