ЕГЭ Математика

Тема 2: Алгебра

Урок 8: Тригонометрический круг

  • Видео
  • Тренажер
  • Теория
Заметили ошибку?

Тригонометрический круг

Алгоритм для создания тригонометрического круга:

  • Рисуем системы координат;
  • Изображаем круг.
  • Ставим точку отсчёта 0 для измерения углов.
  • Затем изобразим угол.
  • Учитывая полные обороты, каждый угол можно представить, как a + 360° ⋅ n где n – целое число.

Вращение против часовой стрелки – это положительное направление, а по часовой – отрицательное.

Измерение углов

π=180°, тогда 90°=π2,45°=π4

Формула для перевода из градусов в радианы: a=φπ180

Формула для перевода из радиан в градусы: φ=α180°π

Определение значений тригонометрических функций

Для того чтобы найти значение какой-либо тригонометрической функции, нужно найти угол на окружности. Если нужен синус или косинус, то из найденной точки проводим перпендикуляр к нужной оси: если нужен косинус – к оси абсцисс, если нужен синус – к оси ординат, если нужен тангенс или котангенс, то продлеваем радиус до нужной оси.

Задача

Упростите выражение 53tg(π3sin(π6)).

53tg(π3sin(π6))=53tg(π312)=53tgπ6=5333=5

Ответ: 5