Физика
Тема 12: Механика. Кинематика. Профильный уровеньУрок 8: Уравнение движения с постоянным ускорением. Поступательное движение
- Видео
- Тренажер
- Теория
Введение
Главная задача кинематики – определить положение тела в любой момент времени. Тело может покоиться, тогда его положение меняться не будет (см. рис. 1).
Тело может двигаться прямолинейно с постоянной скоростью. Тогда его перемещение будет изменяться равномерно, то есть одинаково за равные промежутки времени (см. рис. 2).
Перемещение , скорость, умноженная на время, это мы давно умеем делать. Тело может двигаться с постоянным ускорением, рассмотрим такой случай (см. рис. 3).
Ускорение
Ускорение – это изменение скорости за единицу времени (см. рис. 4):
Скорость – векторная величина, поэтому и изменение скорости, т. е. разность векторов конечной и начальной скорости, является вектором. Ускорение – тоже вектор, направленный туда же, куда и вектор разности скоростей (см. рис. 5).
Мы рассматриваем прямолинейное движение, поэтому можно выбрать координатную ось вдоль прямой, вдоль которой происходит движение, и рассматривать проекции векторов скорости и ускорения на эту ось: |
Тогда равномерно изменяется его скорость: (если его начальная скорость была равна нулю). Как теперь найти перемещение? Скорость умножить на время – нельзя : скорость постоянно менялась; какую брать? Как определить, где при таком движении будет находиться тело в любой момент времени – сегодня мы эту проблему решим.
Сразу определимся с моделью: мы рассматриваем прямолинейное поступательное движение тела. В таком случае можем применять модель материальной точки. Ускорение направлено вдоль той же прямой, вдоль которой материальная точка движется (см. рис. 6).
Поступательное движение
Поступательное движение – это такое движение, при котором все точки тела движутся одинаково: с одинаковой скоростью, совершая одинаковое перемещение (см. рис. 7).
А как еще может быть? Взмахните рукой и проследите: понятно, что ладонь и плечо двигались по-разному. Посмотрите на колесо обозрения: точки вблизи оси почти не движутся, а кабинки движутся с другой скоростью и по другим траекториям (см. рис. 8).
Посмотрите на движущийся автомобиль: если не учитывать вращение колес и движение частей мотора, все точки автомобиля движутся одинаково, движение автомобиля считаем поступательным (см. рис. 9).
Тогда нет смысла описывать движение каждой точки, можно описать движение одной. Автомобиль считаем материальной точкой. Обратите внимание, что при поступательном движении линия, соединяющая любые две точки тела при движении, остается параллельной сама себе (см. рис. 10).
|
Задача
Автомобиль ехал прямолинейно в течение часа. В начале часа его скорость была 10 км/ч, а в конце – 100 км/ч (см. рис. 11).
Скорость изменялась равномерно. Сколько километров проехал автомобиль?
Проанализируем условие задачи.
Скорость автомобиля изменялась равномерно, то есть всё время пути его ускорение было постоянным. Ускорение по определению равно:
Автомобиль ехал прямолинейно, поэтому мы можем рассматривать его движение в проекции на одну ось координат:
Найдем перемещение.
Пример возрастающей скорости
На стол кладут орехи, по одному ореху в минуту. Понятно: сколько минут пройдет, столько орехов на столе окажется. А теперь представим, что скорость накладывания орехов равномерно возрастает с нуля: первую минуту орехов не кладут, во вторую кладут один орех, потом два, три и так далее. Сколько орехов окажется на столе через какое-то время? Понятно, что меньше, чем если бы максимальная скорость поддерживалась всегда. Причем хорошо видно, что меньше в 2 раза (см. рис. 12).
Так же и с равноускоренным движением: допустим, сначала скорость была равна нулю, в конце стала равна (см. рис. 13).
Если бы тело постоянно двигалось с такой скоростью, его перемещение было бы равно , но поскольку скорость равномерно возрастала – то в 2 раза меньше. |
Мы умеем находить перемещение при РАВНОМЕРНОМ движении: . Как обойти эту проблему? Если скорость изменяется не на много, то движение можно приближенно считать равномерным. Изменение скорости будет небольшим за небольшой интервал времени (см. рис. 14).
Поэтому разобьем время в пути T на N небольших отрезков длительностью (см. рис. 15).
Подсчитаем перемещение на каждом отрезке времени. Скорость прирастает на каждом интервале на:
На каждом отрезке мы будем считать движение равномерным и скорость приближенно равной начальной скорости на данном отрезке времени. Посмотрим, не приведет ли к ошибке наше приближение, если на небольшом промежутке движение будем считать равномерным. Максимальная ошибка будет равна:
и суммарная ошибка за всё время пути -> . При больших N принимаем ошибка близка к нулю. Это мы увидим и на графике (см. рис. 16): на каждом интервале будет ошибка, но суммарная ошибка при достаточно большом количестве интервалов будет пренебрежимо мала.
Итак, каждое следующее значение скорости на одну и ту же величину больше предыдущего. Из алгебры мы знаем, что это арифметическая прогрессия с разностью прогрессии :
Путь на участках (при равномерном прямолинейном движении (см. рис. 17) равен:
На втором участке:
На n-м участке путь равен:
Арифметическая прогрессия
Арифметической прогрессией называется такая числовая последовательность, в которой каждое следующее число отличается от предыдущего на одну и ту же величину. Арифметическая прогрессия задается двумя параметрами: начальный член прогрессии и разность прогрессии . Тогда последовательность записывается так: Сумма первых членов арифметической прогрессии вычисляется по формуле: |
Просуммируем все пути. Это будет сумма первых N членов арифметической прогрессии:
Т. к. мы разбили движение на много интервалов, то можно считать, что , тогда:
У нас было множество формул, и, чтобы не запутаться, мы не писали каждый раз индексы х, но рассматривали всё в проекции на координатную ось.
Итак, мы получили главную формулу равноускоренного движения: перемещение при равноускоренном движении за время T, которую мы наряду с определением ускорения (изменение скорости за единицу времени) будем использовать для решения задач:
Мы занимались решением задачи об автомобиле. Подставим в решение числа и получим ответ: автомобиль проехал 55,4 км.
Математическая часть решения задачи
Вычислим ускорение: Перемещение равно: Подставим числа и получим ответ: |
Определение координаты тела
С перемещением мы разобрались. А как определить координату тела в любой момент времени?
По определению перемещение тела за время – это вектор, начало которого находится в начальной точке движения, а конец – в конечной точке, в которой тело будет через время . Нам нужно найти координату тела, поэтому запишем выражение для проекции перемещения на ось координат (см. рис. 18):
Выразим координату :
То есть координата тела в момент времени равна начальной координате плюс проекция перемещения, которое совершило тело за время . Проекцию перемещения при равноускоренном движении мы уже нашли, осталось подставить и записать:
Это и есть уравнение движения с постоянным ускорением. Оно позволяет узнать координату движущейся материальной точки в любой момент времени. Понятно, что момент времени мы выбираем в пределах промежутка, когда работает модель: ускорение постоянное, движение прямолинейное.
Почему уравнение движения нельзя применять для нахождения пути
В каких случаях мы можем считать перемещение по модулю равным пути? Когда тело движется вдоль прямой и не меняет направления. Например, при равномерном прямолинейном движении мы не всегда четко оговариваем, путь мы находим или перемещение, всё равно они совпадают. При равноускоренном движении скорость изменяется. Если скорость и ускорение направлены в противоположные стороны (см. рис. 19), то модуль скорости убывает, и в какой-то момент он станет равен нулю и скорость поменяет направление, то есть тело начнет двигаться в противоположную сторону.
И тогда, если в данный момент времени тело находится на расстоянии 3 м от начала наблюдения, то его перемещение равно 3 м, но если тело сначала прошло 5 м, затем развернулось и прошло еще 2 м, то путь будет равен 7 м. И как же его найти, если не знать этих чисел? Просто надо найти момент, когда скорость равна нулю, то есть когда тело развернется, и найти путь к этой точке и от нее (см. рис. 20).
|
Список литературы
- Соколович Ю.А., Богданова Г.С Физика: Справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
- Ландсберг Г.С. Элементарный учебник физики; т.1. Механика. Теплота. Молекулярная физика – М.: Издательство «Наука», 1985.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Интернет портал «kaf-fiz-1586.narod.ru» (Источник)
- Интернет портал «Учеба - Легко» (Источник)
- Интернет портал «Гипермаркет знаний» (Источник)
Домашнее задание
- Что такое арифметическая прогрессия?
- Какое движение называется поступательным?
- Чем характеризуется векторная величина?
- Запишите формулу для ускорения через изменение скорости.
- Какой вид имеет уравнение движения с постоянным ускорением?
- Вектор ускорения направлен в сторону движения тела. Как будет изменять свою скорость тело?