Математика
Тема 14: Тела вращения. Профильный уровеньУрок 11: Комбинация цилиндра и призмы
- Видео
- Тренажер
- Теория
Цилиндр, вписанный в призму
Говорят, что цилиндр вписан в призму (или призма описана около цилиндра), если основания цилиндра вписаны в соответствующие основания призмы (рис. 1). Очевидно, что их высоты совпадут (рис. 2).
|
|
Условия, при которых цилиндр можно вписать в призму
Нужно, чтобы в основание призмы можно было вписать окружность. Что для треугольной и правильной призмы верно всегда (рис. 3, 4).
|
|
Вывод: цилиндр можно вписать в призму, если призма прямая, а в ее основание можно вписать окружность.
Для четырехугольный призмы необходимо чтобы призма была также прямой, а четырехугольник в основании был описанным. Т. е. суммы противоположных сторон были равны (рис. 5).
Задача №1
Условие: в правильную треугольную призму, все ребра которой равны 6, вписан цилиндр. Найти его радиус и высоту (рис. 6).
Решение
Заметим, что высота цилиндра равна высоте призмы, а значит, равна 6.
Радиус основания цилиндра равен радиусу окружности, вписанной в правильный треугольник со стороной 6. Радиус этой окружности находим по формуле , то есть он равен .
Ответ: .
Цилиндр, описанный около призмы
Говорят, что цилиндр можно описать около призмы (или призму вписать в цилиндр), если основания призмы вписаны в основания цилиндра. В данном случае, очевидно, снова будут равны высоты (боковые стороны призмы и образующие цилиндра) (рис. 7).
Условия, при которых цилиндр можно описать около призмы
Цилиндр можно описать около призмы, когда основание призмы можно вписать в окружность. Для треугольной -угольной правильной призмы – всегда, для четырехугольной – когда сумма противоположных углов в основании дает 180 градусов (рис. 8).
Задача №2
Условие: дана правильная шестиугольная призма, вписанная в цилиндр. Радиус основания цилиндра равен 7, а площадь боковой поверхности цилиндра равна 28. Найти площадь боковой поверхности призмы (рис. 9).
Решение
Сперва найдем высоту цилиндра. Так как , то .
Значит, и боковое ребро призмы также равно 2.
Далее, в основании призмы лежит правильный шестиугольник, вписанный в окружность. Как известно, сторона правильного шестиугольника равна радиусу описанной окружности, то есть 7.
Тогда площадь боковой поверхности призмы равна .
Ответ: 84.
Разветвление: задача №3
Условие. Дана четырехугольная прямая призма, все ребра которой равны 1. Известно, что около этой призмы можно описать цилиндр. Найдите объем призмы и площадь полной поверхности данного цилиндра (рис. 10).
Решение
Так как все ребра равны, то в основании призмы лежит ромб. Раз можно описать цилиндр около призмы, то ромб можно вписать в окружность, а значит, этот ромб – квадрат. Следовательно, призма – это куб со стороной 1, его объем также равен 1.
Высота цилиндра – 1, а радиус окружности равен половине диагонали квадрата, то есть . Тогда .
Ответ: .
Заключение
На уроке мы разобрали комбинации призмы и цилиндра, а также решили задачи по темам: цилиндр, описанный вокруг призмы и цилиндр, вписанный в призму.
Список литературы
- Атанасян Л.С. и др. Геометрия. Учебник для 10-11 классов.
- Погорелов А.В. Геометрия. Учебник для 10-11 классов.
- Бевз В.Г., Владимирова Н.Г. Геометрия 11 класс.
Домашнее задание
- В правильную треугольную призму, все ребра которой равны 12, вписан цилиндр. Найти его радиус и высоту.
- Дана правильная шестиугольная призма, вписанная в цилиндр. Радиус основания цилиндра равен 10, а площадь боковой поверхности цилиндра равна 100. Найти площадь боковой поверхности призмы.
- Дана четырехугольная прямая призма, все ребра которой равны 2. Известно, что около этой призмы можно описать цилиндр. Найдите объем призмы и площадь полной поверхности данного цилиндра.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Интернет-портал Interneturok.ru (Источник).
- Интернет-портал Interneturok.ru (Источник).
- Интернет-портал Interneturok.ru (Источник).