Математика

Тема 1: Четырехугольники

Урок 1: Многоугольники. Выпуклый многоугольник. Четырехугольник

  • Видео
  • Тренажер
  • Теория
Заметили ошибку?

Многоугольники. Выпуклый многоугольник. Четырехугольник.

Треугольник – это частный случай многоугольника.

 

 

В самом названии уже подчеркивается, что это фигура, у которой три угла. Следовательно, в многоугольнике их может быть много, т.е. больше, чем три. Например, изобразим пятиугольник – фигуру с пятью углами.

Многоугольник – фигура, состоящая из нескольких точек (больше двух) и соответствующего количества отрезков, которые их последовательно соединяют. Эти точки называются вершинами многоугольника, а отрезки – сторонами. При этом никакие две смежные стороны не лежат на одной прямой и никакие две несмежные стороны не пересекаются.

Любой многоугольник разделяет плоскость на две области: внутреннюю и внешнюю. Внутреннюю область также относят к многоугольнику.

Иными словами, например, когда говорят о пятиугольнике А1А2А3А4А5, имеют в виду и всю его внутреннюю область, и границу. А ко внутренней области относятся и все точки, которые лежат внутри многоугольника.

 

 

Многоугольники еще иногда называют n-угольниками, чтобы подчеркнуть, что рассматривается общий случай наличия какого-то неизвестного количества углов (n штук).

Периметр многоугольника – сумма длин сторон многоугольника.

Отрезок, соединяющий любые две противоположные вершины, называется диагональю многоугольника.

 

 

Многоугольники делятся на выпуклые и невыпуклые. Например, многоугольник, изображенный на рисунке выше, является выпуклым, а на рисунке ниже – невыпуклым.

 

 

Многоугольник называется выпуклым, если при проведении прямой через любую из его сторон весь многоугольник лежит только по одну сторону от этой прямой. Невыпуклыми являются все остальные многоугольники.

Правильный многоугольник – это выпуклый многоугольник, у которого все стороны и углы равны.

Существенное отличие четырехугольника от треугольника в том, что он может быть выпуклым или невыпуклым.

 

 

 

Очень важное различие, о котором знает каждый плотник, состоит в том, что треугольник – «жесткая» фигура, а четырехугольник (как и все остальные многоугольники) – «нежесткая».

У треугольника невозможно изменить его форму, не изменив длин сторон. При этом у любого четырехугольника можно изменить его форму, не меняя длины сторон. На практике это будет означать, что треугольник, сколоченный из трех дощечек, будет жестким, не будет сминаться даже при сильных воздействиях, а четырехугольник при достаточной нагрузке со стороны изменит свою форму.

Для описания свойств многоугольников существуют две важнейшие теоремы об их углах: теорема о сумме внутренних углов выпуклого многоугольникаитеорема о сумме внешних углов выпуклого многоугольника.

Теорема. О сумме внутренних углов выпуклого многоугольника (n-угольника).

Сумма углов n-угольника равна 180°·(n-2).

Математическая запись: A1+A2++An=180°(n-2), где n – количество его углов (сторон).

Вспомним, что любой четырехугольник состоит из двух треугольников (достаточно провести диагональ). Но сумма углов каждого из них одинакова и равна 1800, значит, сумма углов четырехугольника 3600.

Теорема. О сумме внешних углов выпуклого многоугольника (n-угольника).

1'+2'++n'=360°, где n – количество его углов (сторон), а 1',, n' – внешние углы, по одному от каждой вершины.