Математика
Тема 14: Четырёхугольники. Профильный уровеньУрок 10: Ромб и квадрат
- Видео
- Тренажер
- Теория
Ромб и его свойства
Ромб – это частный случай параллелограмма, поэтому он обладает всеми свойствами параллелограмма. Однако есть и специфические свойства, о которых пойдёт речь. Но для начала сформулируем одно из определений ромба.
Ромб – это параллелограмм, у которого все стороны равны.
Сформулируем и докажем теорему о свойствах ромба.
Теорема
Диагонали ромба перпендикулярны и делят углы ромба пополам (являются биссектрисами углов) (см. Рис. 1).
Дано:
– ромб
Доказать:
.
Доказательство:
Рассмотрим : – середина (так как ромб является параллелограммом, то его диагонали в точке пересечения делятся пополам). Кроме того, из определения ромба следует, что . Значит, треугольник – равнобедренный; является медианой этого треугольника, проведённой к основанию, а, значит, и биссектрисой, и высотой. Из этого следует, что:
, то есть диагонали ромба перпендикулярны;
, то есть диагонали ромба являются биссектрисами его углов (равенство остальных углов можно доказать аналогично).
Доказано.
Ещё один частный случай параллелограмма – квадрат.
Квадрат и его свойства
Квадрат – это прямоугольник, у которого все стороны равны.
Квадрат обладает всеми свойствами прямоугольника и ромба. А именно:
- все углы квадрата прямые;
- диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делят углы квадрата пополам.
3. Задачи на ромб и квадрат
Теперь рассмотрим несколько задач, в которых встречаются ромб и квадрат.
Задача 1.
В ромбе одна из диагоналей равна стороне (см. Рис. 2). Найти:
а) углы ромба;
б) углы между диагоналями и сторонами.
Дано: – ромб; .
Найти: а) ; б) .
Решение:
а) (так как у ромба все стороны равны). Значит, треугольник – равносторонний. Отсюда следует, что угол . Так как в любом параллелограмме сумма соседних углов равна , то .
Ответ: .
б) По доказанной выше теореме: . Аналогично получаем, что .
Ответ: .
Задача 2.
Найти периметр ромба , в котором , а меньшая диагональ равна . Найти периметр ромба.
Дано: – ромб; .
Найти:
Решение:
Рассмотрим треугольник , в нём: . Значит, данный треугольник равнобедренный, угол при вершине у него равен , два других угла при основании равны, поэтому данный треугольник – равносторонний. Значит: . Так как в ромбе все стороны равны, то периметр ромба равен: .
Ответ: .
Задача 3.
Найдите углы, которые образуют диагонали ромба с его сторонами, если один из углов ромба равен .
Дано: – ромб, .
Найти:
Решение:
Вспомним, что в любом параллелограмме противоположные углы, а сумма углов, прилежащих к одной стороне, равна . Из этого следует, что: . Теперь воспользуемся доказанной вначале теоремой: .
Ответ:
Задача 4.
Докажите, что параллелограмм является ромбом, если:
а) его диагонали взаимно перпендикулярны;
б) его диагонали являются биссектрисами углов.
а) Дано: – параллелограмм, .
Доказать: – ромб.
Доказательство:
Рассмотрим треугольник : в нем является одновременно и высотой (так как диагонали перпендикулярны), и медианой (так как диагонали в любом параллелограмме точкой пересечения делятся пополам). Значит, – равнобедренный. Из этого следует, что: . Если теперь воспользоваться тем, что в параллелограмме противоположные стороны равны, получаем, что: . То есть – ромб.
Доказано.
б) Дано: – параллелограмм, – биссектрисы углов параллелограмма.
Доказать: – ромб.
Доказательство:
Рассмотрим треугольник : в нем является одновременно и биссектрисой (так как диагонали являются биссектрисами углов), и медианой (так как диагонали в любом параллелограмме точкой пересечения делятся пополам). Значит, – равнобедренный. Из этого следует, что: . Если теперь воспользоваться тем, что в параллелограмме противоположные стороны равны, получаем, что: . То есть, – ромб.
Доказано.
Задача 5.
Докажите, что ромб, у которого один из углов прямой, является квадратом.
Дано: – ромб,
Доказать: – квадрат.
Доказательство:
Вспомним, что квадрат – это одновременно прямоугольник и ромб. Если говорить о сформулированном строгом определении, то квадрат – это прямоугольник, у которого все стороны равны. Равенство сторон следует из того, что данный четырёхугольник – ромб. Осталось доказать, что он является ещё и прямоугольником. По условию: (у любого параллелограмма противоположные углы равны). Кроме того, сумма соседних углов параллелограмма равна . Значит: . Отсюда мы получаем, что – прямоугольник, а значит, и квадрат.
Доказано.
На этом уроке мы изучили ромб и квадрат, а также рассмотрели их свойства и решили различные задачи, в которых встречаются ромб и квадрат.
На следующих уроках мы обобщим полученные знания о четырёхугольниках.
На этом уроке мы изучили ромб и квадрат, а также рассмотрели их свойства и решили различные задачи, в которых встречаются ромб и квадрат.
На следующих уроках мы обобщим полученные знания о четырёхугольниках.
Список литературы
- Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
- Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
- Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Фестиваль педагогических наук "Открытый урок" (Источник).
- Narod.ru (Источник).
- Xvatit.com (Источник).
Домашнее задание
- № 55(а, б), 56(а, б) Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
- Найти углы ромба, если его сторона образует с диагоналями углы, разность которых равна .
- Найти углы ромба, если его сторона образует с диагоналями углы, которые относятся как .
- Доказать, что прямоугольник, у которого диагонали перпендикулярны, – квадрат.