Математика
Тема 13: Неравенства. Профильный уровеньУрок 1: Свойства числовых неравенств
- Теория
Что такое неравенство
Что такое числовое неравенство.
Вспомним, что означают неравенства:
и
:
означает, что
и
означает, что ![]()
Вывод: число
считается большим числа b, если разность
является положительным числом. Число
считается меньше числа b, если разность
является отрицательным числом.
Геометрическая интерпретация.
![]()
![]()
![]()
Если точка с координатой
находится правее, чем точка с координатой b, значит число
. И наоборот. Не всегда очевидна алгебраическая запись, поэтому геометрическая интерпретация часто помогает. С положительными числами это очевидно, а с отрицательными лучше пользоваться расположением этих чисел на числовой оси.
Свойства числовых неравенств.
Свойство неравенств №1
Если
, то ![]()
Доказательство: Поскольку по условию
, то разницы
и
являются положительными числами. Тогда положительной будет и их сумма
Имеем:
.Таким образом, разница
– положительное число, и отсюда следует, что
.
Свойство неравенств №2
Если
и с – любое число, то
.
Доказательство:
Рассмотрим разность
Имеем:
. Поскольку по условию
, то разность
– положительное число и
. Что и требовалось доказать.
Свойство неравенств №3
Если
и c – положительное число, то
. И если
и c – отрицательное число, то
.
Доказательство:
Рассмотрим разность
Имеем:
. Поскольку по условию
, то разность
– положительное число. Если
, то произведение
– положительное число, и разность
положительная , т. е.
.
Если
, то произведение
– отрицательное число, и разность
отрицательная, т. е.
Пример:
, умножим обе части неравенства на 2 и получим
, но если обе части неравенства умножить на -2, то знак неравенства поменяется на противоположный:
.
Действия с неравенствами
Свойство 4.
.Т. е. любые неравенства одного знака можно складывать.
Свойство 5.
Рассмотрим перемножение неравенств.
![]()
Если все числа положительные, то их можно перемножить, и получим
. Если умножать на отрицательное число, то знак неравенства меняется на противоположный.
Свойство 6.
Рассмотрим возведение в степень неравенств.
и
тогда
.
Пример №1
Даны два положительных числа
и
.И
. Доказать, что их обратные величины связаны противоположным неравенством: ![]()
Решение. Перенесем в одну сторону и выполним необходимые действия.![]()
Так как даны положительные числа
и
то нужно убедиться, что
. Чтобы дробь была отрицательным числом, надо, чтобы числитель был отрицательным числом. Умножаем
на -1 и получаем
.
Пример №2
Дано:
а) Оценить число ![]()
Решение: Обе части неравенства умножаем на 2. Тогда
. Задача решена.
б) Оценить число -3![]()
Решение:
будет меняться в пределах
. Умножаем неравенство на 3. Получаем
; ![]()
в) Oценить разность ![]()
Решение:
. Неравенства одного знака можно складывать. Получаем:
Ответ: ![]()
Пример №3
Дано: ![]()
Решение: Переносим все в одну сторону.
. Приводим к общему знаменателю:
Знаменатель по условию
, значит и числитель должен быть положительным числом, т. е.
. Квадрат числа всегда равен положительному числу, кроме, если а=1. Что и требовалось доказать.
Подведение итога урока.
На данном уроке была рассмотрена тема: «Свойства числовых неравенств». В ходе этого занятия вы вспомнили определение неравенства. Получили представление об основных свойствах числовых неравенств, которые впоследствии пригодятся для решения задач.
Список литературы
- Башмаков М.И. Алгебра 8 класс. – М.: Просвещение, 2004.
- Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.
- Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- ЕГЭ по математике (Источник).
- Интернет-портал Frezzii.narod.ru (Источник).
- Фестиваль педагогических идей «Открытый урок» (Источник).
Домашнее задание
- Сравните числа а и b, если: а)
; б)
в) 
- Какое из чисел больше х или у, если известно, что: а)
; б) 
- №530, 532. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.