Математика
Тема 10: Числовые функции. Профильный уровеньУрок 10: Определения и свойства четных и нечетных функций
- Видео
- Тренажер
- Теория
Тема урока, введение
В этом уроке будут даны строгие определения четных и нечетных функций, рассмотрены их свойства, решены некоторые задачи.
Основные определения
Определение 1: Функция называется четной, если для любого значения x из множества X выполняется равенство:
Определение 2: Функция называется нечетной, если для любого значения x из множества X выполняется равенство:
Примеры:
1. четная, т.к.
2. нечетная, т.к.
3. четная,
4. нечетная, .
Дадим развернутое определение четной функции.
Определение 3: Функцию называют четной, если выполнены два условия для всех
1. Область определения симметрична относительно нуля, т.е.
2.
Из определения вытекает важное свойство четной функции:
График четной функции симметричен относительно оси y (Рис. 1).
Дадим развернутое определение нечетной функции.
Определение 4: Функцию называют нечетной, если выполнены два условия для всех
1. Область определения симметрична относительно нуля, т.е.
2.
Из определения нечетной функции вытекает свойство: График нечетной функции симметричен относительно т. (0; 0) (Рис. 2).
Если функция не является ни четной, ни нечетной, то ее называют функцией общего вида.
Примеры
Примеры:
Пример 1. Определите вид функции
четная функция, ее график симметричен относительно оси y.
Пример 2. Определите вид функции
В точке функция не существует, а в точке существует. Область определения несимметрична относительно нуля, значит функция общего вида.
Пример 3.Определите вид функции
Обе точки выколотые, график и область определения симметричны относительно начала координат, функция четная.
Пример 4. Определите вид функции
рафик и область определения симметричны относительно начала координат, функция нечетная.
Пример 5. Определите вид функции
В точке с абсциссой 2 функция не существует, в точке с абсциссой -2 существует. Область определения несимметрична относительно нуля, это функция общего вида.
Пример 6. Определите вид функции
Область определения симметрична относительно нуля, функция нечетная.
Примеры на исследование функции
Рассмотрим примеры на свойства четных и нечетных функций.
Пример 7: Исследовать на четность функцию
Решение:
Первый способ:
,функция четная.
Второй способ:
Возведем в квадрат обе части равенства. Тогда вместо уравнения получим систему:
Второе уравнение полученной системы – уравнение окружности с центром в т.(0; 0) радиусом 4. Но т.к. , графиком уравнения является верхняя полуокружность (Рис. 9).
График симметричен относительно оси y, поэтому функция четная.
Ответ: Функция четная.
Пример 8. Известно, что функция четная и убывает при Определите характер монотонности функции при
Решение:
Нам известно, что функция убывает на луче . Раз она определена на луче и является четной, то она определена и на луче
График четной функции симметричен относительно оси y, т.е. функция возрастает на луче
В качестве примера изобразим график функции (Рис. 10).
Ответ: Функция возрастает при
Пример 9. Дана функция , где
Задайте так, чтобы функция являлась
а. четной
б. нечетной.
Решение:
Если функция четная, ее график симметричен относительно оси y, т.е. (Рис. 11).
Если функция нечетная, ее график симметричен относительно т. (0; 0), т.е. (Рис. 12).
Заключение, вывод
Мы рассмотрели определения и свойства четных и нечетных функций, решили некоторые типовые задачи На следующем уроке мы продолжим изучение свойств четных и нечетных функций.
Список рекомендованной литературы
1. Мордкович А.Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. – М.: Мнемозина, 2002.-192 с.: ил.
2. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.
3. Макарычев Ю. Н. Алгебра. 9 класс : учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.
4. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. Алгебра. 9 класс. 16-е изд. - М., 2011. - 287 с.
5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.
6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.
Рекомендованные ссылки на интернет-ресурсы
1. Раздел College.ru по математике (Источник).
2. Интернет-проект «Задачи» (Источник).
3. Образовательный портал «РЕШУ ЕГЭ» (Источник).
Рекомендованное домашнее задание
1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. № 275 – 278.