Математика

Тема 1: Функции и их свойства

Урок 5: Построение графика квадратичной функций: алгоритм и примеры

  • Видео
  • Тренажер
  • Теория
Заметили ошибку?

Тема 5.

Построение графика квадратичной функции с помощью преобразований.

Рассмотрим частные случаи

y = ax2 + n и y = a(xm)2.

В одной системе координат построим графики функцийy=12x2 и y=12x2+5.

Составим таблицу значений функции: y=12x2

x

-3

-2

-1

0

1

2

3

y

4,5

2

0,5

0

0,5

2

4,5

Чтобы получить таблицу значений для функции y=12x2+5 для тех же значений аргумента, необходимо к найденным значениям функции y=12x2 прибавить 5.

x

-3

-2

-1

0

1

2

3

y

9,5

7

5,5

5

5,5

7

9,5

Получается, что каждую точку второго графика можно получить из некоторой точки первого графика с помощью параллельного переноса на 5 единиц вверх вдоль оси y.

График функции y=12x2+5 – парабола, полученная в результате сдвига вверх графика функции y=12x2.

График функции y = ax2 + n – парабола, которую можно получить из графика функции y = ax2 с помощью параллельного переноса вдоль оси y на n единиц вверх, если n > 0 или на – n единиц вниз, если n < 0.

В одной системе координат построим графики функций y=12x2 и y=12x-52. Составим таблицы значений для этих функций.

y=12x2

x

-3

-2

-1

0

1

2

3

y

4,5

2

0,5

0

0,5

2

4,5

y=12x-52

x

2

3

4

5

6

7

8

y

4,5

2

0,5

0

0,5

2

4,5

Значит, если переместить каждую точку графика y=12x2 вправо на 5 единиц, то получим соответствующую точку графика функции y=12x-52. Иначе говоря, каждую точку второго графика можно получить из соответствующей точки первого графика с помощью параллельного переноса на 5 единиц вправо вдоль оси x.

График функции y=12x-52 – парабола, полученная y=12x-52 в результате сдвига вправо графика функции y=12x2.

График функции y = a(x - m)2 – парабола, которую можно получить из графика функции y = ax2 с помощью параллельного переноса вдоль оси x на на m единиц вправо, если m > 0 или на – m единиц влево, если m < 0.

Полученные выводы позволяют понять, что представляет собой график функции y = a(x - m)2. Например, график функции y=12x-52+3 можно получить из графика функции y=12x2 с помощью двух параллельных переносов – сдвига вдоль оси x на 5 единиц вправо и вдоль оси y на 3 единицы вверх.

Таким образом, график функции y = a(x - m)2 можно получить из параболы y = ax2 с помощью двух параллельных переносов: сдвига вдоль x на m единиц вправо, если m > 0 или на – m единиц влево, если m < 0, сдвига вдоль оси y на n единиц вверх, если n > 0 или на – n единиц вниз, если n < 0.

Заметим, что данные преобразования можно производить в любом порядке: сначала выполнить параллельный перенос вдоль оси x, а затем вдоль оси y или наоборот.

Преобразования, которые мы рассмотрели применимы для любых функций.

Рассмотрим пример.

Построим график функции y = x2 - 4x двумя способами: с помощью преобразований, которые мы сегодня рассмотрели и с помощью таблицы значений функции.

Для того, чтобы построить график функции с помощью преобразований, необходимо его представить в виде y = a(x - m)2. Для этого надо выделить полный квадрат. Итак, в нашу функцию y = x2 - 4x добавим 4 и вычтем 4. Получим:

y=x2-4x+4-4=x-22-4

График данной функции можно получить из графика функции y = x2 с помощью двух параллельных переносов: сдвига вдоль оси x на 2 единицы вправо, и сдвига вдоль оси y на 4 единицы вниз.

Чтобы построить график функции вторым способом, составим таблицу ее значений. Возьми нечетное количество точек, например, пять и семь. В центре поставь координаты вершины параболы.

xв=-b2a=--421=2

yв=22-42=-4

График квадратичной функции симметричен относительно прямой, параллельной оси y, проходящей через вершину параболы. В данном случае прямая x = 2 является осью симметрии.

x

-1

0

1

2

3

4

5

y

5

0

-3

-4

-3

0

5