Математика
Тема 14: Метод координат. Профильный уровеньУрок 6: Связь между координатами вектора и координатами его начала и конца
- Видео
- Тренажер
- Теория
Координаты вектора, отложенного из начала координат
Напомним, что любой вектор на плоскости можно однозначно выразить через два неколлинеарных вектора и . Это значит, что векторы и задают координатную плоскость, в которой будут рассматриваться все остальные векторы (см. рис. 1).
Так, найдутся такие числа , , что:
Для конкретного вектора пара чисел единственная, она и называется координатами вектора, отметим, что они совпадают с координатами точки – конца вектора.
Из точки проведем прямые, параллельные осям координат (см. рис. 2). По правилу треугольника имеем:
Координаты произвольного вектора
Дано: ; .
Найти координаты вектора .
Решение
Мы можем найти координаты вектора, построенного из начала координат. Далее применим правило треугольника (см. рис. 3):
;
Тогда:
Так, искомые координаты вектора: , каждая координата вектора равна разности соответствующих координат его конца и начала.
Решение примеров
Пример
Дано: ; .
Найти координаты вектора ; .
Решение
По формуле:
Напомним, что векторы и являются противоположными и их координаты противоположны.
Пример
Дано: ; ; .
Найти числа , .
Решение
По формуле:
Пример
Дано: параллелограмм ; ; ; .
Найти координаты вершины параллелограмма (см. рис. 4).
Решение
Построим заданные точки в системе координат, построим параллелограмм. Чтобы найти координаты точки воспользуемся равенством векторов .
Найдем координаты векторов:
;
Из равенства векторов следует равенство их координат:
Вывод
Итак, мы научились находить координаты вектора по координатам его начала и конца.
Список литературы
- Атанасян Л.С. и др. Геометрия 7–9 классы. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2010.
- Фарков А.В. Тесты по геометрии: 9 класс. К учебнику Л. С. Атанасяна и др. – М.: Экзамен, 2010.
- Погорелов А.В. Геометрия, уч. для 7–11 кл. общеобр. учрежд. – М.: Просвещение, 1995.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Домашнее задание
- Найти координаты вектора :
- , ;
- , ;
- , .
- Найти числа , :
- , , ;
- , , .
- Найти координаты недостающей вершины параллелограмма:
; ;