Математика

Тема 3: Степень. Корень n-ой степени

Урок 1: Степенная функция, линейная функция, квадратичная, кубическая и y=1/х

  • Видео
  • Тренажер
  • Теория
Заметили ошибку?

Тема 14.

Функция y=xn , четные и нечетные функции.

Сравним значения функции fx=18x4-x2 при двух противоположных значениях аргумента, например x=3 и x=-3:

f3=1834-32=1881-9=118

f-3=18(-3)4-(-3)2=1881-9=118

Получим f3=f-3. Значения этой функции равны и при любых других противоположных значениях аргумента. Действительно,

f-x=18(-x)4-(-x)2=18x4-x2, то есть

f-x=fx

При этом рассматриваемая функция такова, что для каждого значения аргумента х противоположное ему число (–х) так же принадлежит ее области определения. В таких случаях говорят, что область определения функции симметрична относительно нуля.

Функции, обладающие такими свойствами, называют четными функциями.

Определение: Функция y=fx называется четной, если область ее определения симметрична относительно нуля и для любого значения аргумента х верно равенство

f-x=fx

График любой четной функции симметричен относительно оси ординат.

Определение: Функция y=fx называется нечетной, если область ее определения симметрична относительно нуля и для любого значения аргумента х верно равенство

f-x=-fx

Заметим, что не всякая функция является четной или нечетной.

График любой нечетной функции симметричен относительно начала координат.

Давай проверим на четность и нечетность функции:

fx=3x4-x2+5

Для этого подставим в нашу функцию вместо переменной х (-х), получим:

f-x=3(-x)4--x2+5=3x4-x2+5

Значит, f-x=fx, следовательно, функция является четной.

fx=x2+x+1

f-x=(-x)2+(-x)+1=x2-x+1

Эта функция является ни четной, ни нечетной.

Свойства функции y = xn при четном n аналогичны свойствам функции y = x2.

Степенные функции при n=1, 2 и 3, то есть функции y=x, y = x2, y = x3 тебе уже знакомы. Их свойства и графики нам известны.

Выясним теперь свойства степенной функции и особенности ее графика при любом натуральном n.

Рассмотрим случай, когда n – четное число.

Свойства функции y = xn при четном n аналогичны свойствам функции y = x2.

  1. Выражение xn, где n – натуральное число, имеет смысл при любом x. Поэтому областью определения функции является множество всех действительных чисел.
  2. Область значений функции есть множество неотрицательных чисел.
  3. Если х=0, то у=0. График функции проходит через начало координат.
  4. Если Если x ≠ 0, то y > 0. Это следует из того, что четная степень как положительного, так и отрицательного числа положительна. График функции расположен в первой и второй координатных четвертях.
  5. Функция является четной, график функции симметричен относительно оси ординат.
  6. Функция возрастает в промежутке 0;+) и убывает в промежутке (-;0.

Рассмотрим теперь случай, когда n – нечетное число.

Свойства функции y = xn при нечетном n аналогичны свойствам функции y = x3.

По графику этой функции перечислим ее свойства.

  1. Выражение xn, где n – натуральное число, имеет смысл при любом x. Поэтому областью определения функции является множество всех действительных чисел.
  2. Область значений функции есть множество всех действительных чисел.
  3. Если х=0, то у=0. График функции проходит через начало координат.
  4. Если x > 0, то y > 0, если x < 0, то y < 0 График функции расположен в первой и третьей координатных четвертях
  5. Функция является нечетной. График функции симметричен относительно начала координат.
  6. Функция возрастает на всей области определения.