Математика

Тема 3: Степень. Корень n-ой степени

Урок 2: Определение корня n-ой степени. Свойства арифметического корня n-ой степени

  • Видео
  • Тренажер
  • Теория
Заметили ошибку?

Тема 15.

Определение корня n-ой степени. Свойства арифметического корня n-ой степени.

Давай вспомним, что квадратным корнем из числа а называется такое число, квадрат которого равен а. Аналогично определяется корень любой натуральной степени n.

Итак, корнем n-ой степени из числа а называется такое число, n-ая степень которого равна а.

Например, корнем пятой степени из 32 является число 2, так как 25=32, корнем четвертой степени из 81 является каждое из чисел 3 и -3, так и 34=81 и (-3)4=81. Корень второй степени принято называть квадратным корнем, а корень третьей степени – кубическим корнем.

Если n - нечетное число, то выражение an имеет смысл при любом a; если n - четное число, то выражение an имеет смысл при a0.

Из определения корня n-ой степени следует, что при всех значениях а, при которых выражение anимеет смысл, верно равенствоann=a.

Определение: Арифметическим корнем n-ой степени из неотрицательного числа а называется неотрицательное число, n-ая степень которого равна а.

Корень нечетной степени из отрицательного числа можно выразить через арифметический корень. Например,

-83=-83=-2

Значит, при любом положительном a и нечетном n верно равенство:

-an=-an

Решим уравнение: x6 = 7. Корнями уравнения служат числа, шестая степень которых равна 7. И таких чисел два: 76 и -76.

Решим уравнение x3 = 27. Уравнение имеет единственный корень, это число, третья степень которого равна 27, то есть 273=3.

Рассмотрим свойства арифметического корня n-ой степени.

  1. Если a0 и b0, то abn=anbn

Корень из неотрицательных множителей равен произведению корней из этих множителей.

Например, найдем значение выражения 16814=164814=23=6

  1. Если a0 и b>0, то abn=anbn

Корень из дроби, числитель которой неотрицателен, а знаменатель положителен, равен корню из числителя, деленному на корень из знаменателя.

Например, найдем значение выражения 210273=64273=643273=43=113.

  1. Если n и k – натуральные числа и a0, то akn=ank
  2. Если n,k и m – натуральные числа и a0, то amknk=amn

Если показатель корня и показатель степени подкоренного выражения умножить или разделить на одно и то же натуральное число, то значение корня не изменится.

Рассмотрим некоторые примеры.

Вычислим значение выражения:

1353253=135253=275253=271253=35=15

5106212526=510212526=5122126=10126=102=100

8-3738+373=8-378+373=64-373=273=3