Математика

Тема 12: Производная. Профильный уровень

Урок 4: Определение производной, её физический и геометрический смысл. Алгоритм нахождения производной

  • Видео
  • Тренажер
  • Теория
Заметили ошибку?

 

 

Тема: Производная

 

Урок: Определение производной, её физический и геометрический смысл. Алгоритм нахождения производной

 

1. Введение новых понятий

 

 

График функции y=f(x)

 

Рис. 1. График функции .

Рассмотрим функцию , ее график и дадим физическую интерпретацию.

Построим систему координат и кривую  (см. рис.1), где

 независимая переменная или аргумент (время),

 – зависимая переменная или функция (расстояние),

 – закон или правило, по которому каждому значению  ставится в соответствие только одно значение .

Зафиксируем момент времени  (см. рис.2). В этот момент времени можно вычислить по заданному закону  , т.е. имеем точку . Эта точка показывает, что в данный момент времени , расстояние -  . Дадим аргументу приращение , т.е. прошло некоторое время . Момент времени, который будет рассматриваться  - это  .

Секущая к графику функции y=f(x)

Рис. 2. Секущая к графику функции .

 – приращение аргумента – это разность между новым значением аргумента и старым.

Итак, в новый момент времени, расстояние (от дома) - . Это расстояние можно вычислить по заданному закону, т.е. если подставить в функцию новое значение независимой переменной (аргумента), то можно вычислить новое значение функции. Так получилась точка . В результате получилась секущая , которая наклонена к оси   под углом .

 – секущая,  – ее угол наклона. Этот угол, во – первых, в верхней полуплоскости и, во – вторых, с положительным направлением оси .

Рассмотрим треугольник  (см. рис.3). Он прямоугольный. В этом треугольнике острый угол – это угол -  угол  наклона секущей. Один из катетов - это приращение аргумента, а второй катет – это разность между значением функции в новой точке и значением функции в старой точке.

Приращение функции и приращение аргумента.

Рис. 3. Приращение функции и приращение аргумента.

Величина  называется  – приращение функции и вычисляется как разность значений функции в новый момент времени минус значение функции в старый момент времени

.

 

2. Физический смысл отношения ∆f/∆x

 

 

Рассмотрим отношение  , где  – приращение функции,  – приращение аргумента (см. рис.4).

 

Из физических соображений ясно, что отношение расстояния ко времени – это средняя скорость . В этом заключается физический смысл отношения  .

Физический и геометрический смысл отношения

Рис. 4. Физический и геометрический смысл отношения   .

С другой стороны отношение катета  к катету  – это тангенс угла  – тангенс угла наклона секущей, т.е. геометрический смысл отношения   – это тангенс угла наклона секущей  .

 

3. Определение производной

 

 

Пусть . Понятно, что и . Точка  будет стремиться к точке , а положение секущей  будет стремиться занять положение касательной в точке  к кривой   (см. рис.4). Имеем

 

Зафиксируем эту касательную,  – угол наклона этой касательной. Если зафиксировать точку , то отношение   зависит только от величины .

Если отношение    при  стремится к какому-то числу, то это число называется производной функции  в точке  и обозначается .

Определение. Производной функции  в точке  называется число, к которому стремится разностное соотношение    при .

Определение производной с помощью пределов.

Предел при  разностного отношения  , если он существует, называется производной функции в точке  и обозначается .

 

4. Геометрический и физический смысл производной

 

 

, где  – мгновенная скорость в момент . В этом заключается физический смысл производной. Производная – это также тангенс угла наклона касательной , где  - угол наклона касательной к кривой  в точке с абсциссой .

 

 

5. Алгоритм нахождения производной

 

 

Для того чтобы найти  нужно:

 

1) Задать приращение  – это приращение аргумента и вычислить соответствующее приращение функции  или .

2) Найти разностное соотношение  , упростить его и сократить на  .

3) Если отношение   при  стремится к какому-то числу, то это число будет .

 

6. Итог урока

 

 

Итак, на уроке было рассмотрено понятие производной. Для этого ввели два новых понятия: приращение аргумента и приращение функции. Также были рассмотрены события, когда приращение аргумента и приращение функции конкретные числа, тогда соотношение   имеет смысл физический – это средняя скорость за время  и геометрический смысл – это тангенс угла наклона секущей. Далее было рассмотрено, какие процессы происходят, когда . Если , тогда и  , и секущая стремится занять положение касательной. Если разностное отношение    при  стремится к некоторому числу, то это число называется производной функции  в точке . Физический смысл производной в момент  – это мгновенная скорость в момент , а геометрический  – это тангенс угла наклона касательной, которая проведена к кривой в точке с абсциссой . Рассмотрен алгоритм нахождения производной: нужно дать приращение аргументу и получить новую точку . Получили значение функции в новой точке и нашли приращение функции. Надо разделить   на  и упростить это отношение так, чтобы сократился , и то, что получится при стремлении к нулю будет называться производной функции в конкретной точке . Дальнейшее изложение зависит от вида функции, что и будет рассматриваться на следующем уроке.

 

 

Список рекомендованной литературы

1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2009.

2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник  для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.

3. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.

4. Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М.И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер.-К.: А.С.К., 1997.

7. ЗвавичЛ.И., Шляпочник Л.Я., Чинкина Алгебра и начала анализа. 8-11 кл.: Пособие для школ и классов с углубленным изучением математики (дидактические материалы).-М.: Дрофа, 2002.

8. Саакян С.М., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

9. Карп А.П. Сборник задач по алгебре и началам анализа : учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

10. Глейзер Г.И. История математики в школе. 9-10 классы (пособие для учителей).-М.: Просвещение, 1983

 

Дополнительные веб-ресурсы

1. Интернет-портал Mathematics.ru (Источник). 

2. Портал Естественных Наук (Источник). 

3. Интернет-портал Exponenta.ru (Источник).  

 

Сделай дома

№ 39.40 (Алгебра и начала анализа, 10 класс (в двух частях). Задачник  для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.)

 

Видеоурок: Определение производной, её физический и геометрический смысл. Алгоритм нахождения производной по предмету Алгебра за 10 класс.