Математика
Тема 12: Отношения и пропорции. Профильный уровеньУрок 3: Пропорции (Вольфсон Г.И.)
- Видео
- Тренажер
- Теория
Вступление. Тема урока
Слово «пропорция» происходит от латинского корня и означает «соразмерность». Люди часто используют его в повседневной жизни. Говорят, например, о пропорциях человеческого тела или о пропорциях в кулинарии. Сегодня мы узнаем, что вкладывают в это слово математики.
Пропорция. Иллюстрирующий пример и определение
Рассмотрим два отношения. Мы помним, что отношение – это частное двух чисел.
Заметим, что и в первом и во втором случае значение частного равно трем. Перед нами два равных отношения. Запишем равенство.
Пятнадцать так относится к пяти, как двадцать четыре к восьми. Такое равенство и называют пропорцией. Иногда это равенство записывают в виде равенства обыкновенных дробей.
Сформулируем определение: равенство двух отношений называют пропорцией.
Как записывают и читают пропорции. Что называют средними и крайними членами пропорции
С помощью букв пропорцию можно записать:
Отношение a к b равно отношению c к d. Иногда пропорцию читают по-другому: «a так относится к b, как c относитсяк d». Участвующие в пропорции числа называют членами пропорции. Считают, что все члены отличны от нуля.
Числа a и d называют крайним членами пропорции, а числа b и c– средними членами. Действительно, в первом варианте записи числа b и c находятся посередине, а числа a и d с краю.
Основное свойство пропорции. Иллюстрирующий пример и формулировка
В рассмотренной ранее пропорции найдем произведение ее средних и крайних членов.
Заметим, что два полученных произведения равны.
Сформулируем основное свойство пропорции в общем виде.
В верной пропорции произведение крайних членов равно произведению средних.
Верно и обратное утверждение.
Если произведение крайних членов равно произведению средних членов пропорции, то пропорцияверна.
Упражнение. Найти неизвестный член пропорции
Найдем неизвестный член пропорции, то есть решим пропорцию.
Числа 0,5 и 13 – это крайние члены; числа aи 2 – это средние члены. Воспользуемся основным свойством пропорции.
Упражнение. Решить пропорцию
Решим пропорцию.
Используя основное свойство пропорции, получим:
Чтобы избавиться от десятичной дроби в знаменателе, умножим и числитель, и знаменатель дроби на 10. Сократим полученную дробь на 4, а затем еще раз на 4.
Х = 60.
Упражнение. Узнать является ли данная пропорция верной
Проверить являются ли данные пропорции верными:
В этом задании нужно проверить, действительно ли выполняется равенство между отношениями.
Решение
Найдем произведение средних и произведение крайних членов для каждой пропорции. Если полученные произведения равны, то пропорция верна. В противном же случае, пропорция является неверной.
верная пропорция, т. к.
неверная пропорция, т. к.
Как сконструировать новые верные пропорции из данной
Если в верной пропорции поменять местами средние или крайние члены, то получившееся новые пропорции тоже верны.
Это так потому, что при такой перестановке произведение крайних и средних членов не изменяется.
Разберем пример. Из данной пропорции получить две новые, переставив крайние и средние члены. Сначала переставим средние члены (рис. 1).
Действительно, произведение средних и крайних не изменилось, значит, полученная пропорция верна. Переставим крайние члены (рис. 2).
И в этом случае произведение средних и крайних не изменилось. Мы получили верную пропорцию.
Список литературы
- Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. – М.: Мнемозина, 2012.
- Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. – Гимназия. 2006.
- Депман И.Я., Виленкин Н.Я. За страницами учебника математики. – М.: Просвещение, 1989.
- Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5–6 класс. – М.: ЗШ МИФИ, 2011.
- Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5–6. Пособие для учащихся 6-х классов заочной школы МИФИ. – М.: ЗШ МИФИ, 2011.
- Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5–6 классов средней школы. – М.: Просвещение, Библиотека учителя математики, 1989.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Домашнее задание
- Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. – М.: Мнемозина, 2012: № 762 (а, г, д), № 765, № 777.
- Другие задания: № 767, № 775.