Математика
Тема 17: Окружность и векторы. Профильный уровеньУрок 16: Сложение и вычитание векторов
- Видео
- Тренажер
- Теория
Тема: Векторы
Урок: Сложение и вычитание векторов
1. Сумма двух векторов, правило треугольника
На предыдущем уроке мы определили понятие вектора, сказали, какие векторы называются равными, коллинеарными, сонаправленными и противонаправленными.
Теперь пусть задано два вектора – вектора и . Найдем сумму этих двух векторов . Для этого отложим из некоторой точки А вектор . Из точки В отложим вектор . Тогда вектор называют суммой заданных векторов: (см. Рис. 1).
Данное определение можно объяснить так: пусть был задан груз, и сначала на него подействовала сила – он переместился из точки А в точку В, после этого подействовала сила – груз переместился из точки В в точку С. Но в результате действия двух этих сил груз переместился из точки А в точку С.
Таким образом, мы получили определение суммы двух векторов – правило треугольника.
Правило треугольника
Для того чтобы получить сумму двух векторов, нужно из произвольной точки отложить первый вектор, из конца полученного вектора отложить второй вектор, и построить вектор, соединяющий начало первого с концом второго – это и будет сумма двух векторов.
Можно провести аналогию с числами. Мы ввели понятие числа, научились складывать числа, определили законы сложения и так далее. Теперь мы ввели понятие вектора, научились находить равные вектора, складывать вектора. Теперь нужно определить законы сложения.
2. Законы сложения векторов, правило параллелограмма
Законы сложения векторов
Для любых векторов , и справедливы следующие равенства:
– переместительный закон.
Доказательство: отложим из точки сначала вектор , получаем точку В, из нее откладываем вектор , получаем точку С и вектор .
Теперь отложим из точки А сначала вектор получим точку В, из нее отложим вектор, получим точку С и вектор .
Чтобы доказать равенство полученных векторов, выполним оба построения из одной точки и получим таким образом правило параллелограмма (см. Рис. 2).
Откладываем из точки А вектор и вектор . Из точки В откладываем вектор , вектора и равны, а значит, стороны ВС и АВ1 четырехугольника АВСВ1 параллельны. Аналогично параллельны и стороны АВ и В1С, таким образом, мы получили параллелограмм. АС – диагональ параллелограмма. , таким образом, мы доказали переместительный
закон сложения векторов и получили правило параллелограмма (см. Рис. 3).
Правило параллелограмма
Чтобы получить сумму двух векторов, нужно из произвольной точки отложить эти два вектора и построить на них параллелограмм. Диагональ параллелограмма, исходящая из начальной точки, и будет суммой заданных векторов.
– сочетательный закон;
Из произвольной точки А отложим вектор , прибавим к нему вектор , получим их сумму . К этой сумме прибавим вектор , получим результат (см. Рис. 4).
В правой части выражения мы сначала получили сумму векторов , после прибавили ее к вектору и получили результат: (см. Рис. 5).
Таким образом, мы доказали сочетательный закон сложения векторов.
3. Правило сложения нескольких векторов
Правило многоугольника
Чтобы сложить несколько векторов, нужно из произвольной точки отложить первый вектор, из его конца отложить второй вектор, из конца второго вектора отложить третий и так далее; когда все векторы отложены, соединив начальную точку с концом последнего вектора, получим сумму нескольких векторов (см. Рис. 6).
По аналогии с действительными числами после того, как мы научились их складывать, нужна обратная операция – вычитание.
4. Правило вычитания векторов
Пусть задано два вектора – векторы и . Найдем разность этих двух векторов .
Определение
Разностью двух векторов и называют такой третий вектор, сумма которого с вектором равна вектору .
Если задан вектор , то можно построить противоположный ему вектор , который будет равен по длине, но противонаправлен. Сумма противоположных векторов всегда есть нулевой вектор: . Таким образом, .
Отложим из произвольной точки вектор , из его конца отложим вектор , получим в результате вектор (см. Рис. 7).
Рассмотрим вычитание векторов на параллелограмме. Из точки А отложим векторы и . Из точек В и D отложим векторв и соответственно. Диагональ АС – это сумма векторов и : . Но в параллелограмме есть еще вторая диагональ – BD. Прибавим к вектору вектор , получим вектор (см. Рис. 8).
Итак, на данном уроке мы вывели правила сложения и вычитания векторов при помощи треугольника и параллелограмма, сформулировали законы сложения векторов.
Список литературы
- Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
- Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
- Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Домашнее задание
- Задание 1: дан треугольник , найдите сумму векторов: и ; и ; и ; и .
- Задание 2: турист прошел 20 км на восток из города А в город В, а потом 30 км на восток в город С. Выбрав подходящий масштаб, начертите векторы и Равны ли векторы и ?
- Задание 3: начертите попарно неколлинеарные векторы , и и постройте векторы , , .