Математика
Тема 2: Числовые последовательностиУрок 3: Формула суммы n первых членов арифметической прогрессии
- Видео
- Тренажер
- Теория
Тема 11.
Формула суммы n первых членов арифметической прогрессии.
Сегодня мы выведем 2 формулы для нахождения суммы первых n-членов арифметической прогрессии.
Давным-давно сказал один мудрец
Что прежде надо
Связать начало и конец
У численного ряда.
Пусть требуется найти сумму первых ста натуральных чисел:
1+2+3+…+98+99+100.
Задача очень непроста:
Как сделать, чтобы быстро
От единицы и до ста
Сложить в уме все числа?
Пять первых связок изучи,
Найдёшь к решению ключи.
С этой задачей связана история, которую рассказывают об известном немецком математике Карле Гауссе.
Когда учитель предложил ученикам сложить натуральные числа от 1 до 100, то маленький Карл моментально пришел с ответом. Вероятно, он заметил, что сумма первого и последнего слагаемого равна 101, сумма второго и предпоследнего слагаемого, тоже 101 и ничего странного в этом нет. Второе слагаемое на единицу больше первого, а предпоследнее на единицу меньше последнего, так что сумма должна быть такой же. То же будет происходить и с каждой новой парой чисел. Таких сумм 50, так как всего чисел 100 и все они разделены на пары. Значит, вся сумма равна числу 101 умноженному на 50. И Гаусс подсчитал, что сумма равна 5050.
1+2+3+4+…..+97+98+99+100
1+100=101
2+99=101
3+98=101
1+2+3+4+…+97+98+99+100=101∙50=5050
С помощью аналогичных рассуждений можно найти сумму n-первых членов арифметической прогрессии:
Обозначим сумму первых n-членов арифметической прогрессии Sn и запишем эту сумму дважды, расположив в первом случае слагаемые в порядке возрастания, а во втором в порядке убывания:
(1)
(2)
Сумма каждой пары членов прогрессии, расположенных друг под другом равна a1 + an, число таких пар равно n, поэтому сложив почленно равенства (1) и (2), получим:
Разделим обе части этого равенства на 2 и получим формулу суммы первых n-членов арифметической прогрессии:
Этой формулой удобно пользоваться, когда известны первый и последний члены арифметической прогрессии. Но можно вывести еще одну формулу, для этого вместо an подставим формулу n-го члена, которую мы узнали на прошлом занятии. Получим:
=
Для нахождения суммы первых n-членов арифметической прогрессии, используя эту формулу, достаточно знать первый член и разность арифметической прогрессии.
Разберем несколько примеров:
Найдем сумму первых 10-ти членов арифметической прогрессии, первый член которой равен минус 23, а десятый член равен 4. Воспользуемся формулой:, получим
Рассмотрим еще один пример:
Вычислим сумму первых двадцати двух членов арифметической прогрессии:
-15; -11; -7; -3; ….
Итак, , значит, можно воспользоваться второй формулой: , получим:
А теперь давай найдем сумму членов арифметической прогрессии с пятнадцатого по тридцатый включительно, если первый член равен 10 и разность равна 3.
Как найти сумму с 15-го по 30-й член включительно, давай подумаем: , если мы найдем сумму тридцати членов и вычтем из нее сумму первых 14-ти членов, то мы получим необходимую сумму с 15-го по 30-й члены.
Итак,
Ответ: 1192.
Эту же сумму мы могли найти и другим, способом, если бы ввели новую арифметическую последовательность, первый член которой был бы равен пятнадцатому члену нашей прогрессии.
А теперь давай решим уравнение:
Можно, конечно, расписать все слагаемые, привести подобные и решить это линейное уравнение, но это займет очень много времени. А если внимательно посмотреть на это уравнение, то можно заметить, что каждое следующее слагаемое отличается от предыдущего на 4. То, есть последовательность:
x + 1; x + 5; x + 9; … ; x + 69 является арифметической, сумма членов которой равна 684.
Итак, имеем: , .
Найдем разность арифметической прогрессии:
Найдем номер последнего члена, для этого воспользуемся формулой n-го члена: an = a1 + d(n - 1)
x + 69 = x + 1 + 4(n - 1)
x + 69 = x + 1 + 4n - 4
4n = 72, n = 18
Подставим все данные в формулу суммы первых n-членов арифметической прогрессии, получим:
684 = (2x + 70) ∙ 9, отсюда 2x + 70 = 76 2x=6, x=3
Ответ:3