Математика

Тема 2: Числовые последовательности

Урок 3: Формула суммы n первых членов арифметической прогрессии

  • Видео
  • Тренажер
  • Теория
Заметили ошибку?

Тема 11.

Формула суммы n первых членов арифметической прогрессии.

Сегодня мы выведем 2 формулы для нахождения суммы первых n-членов арифметической прогрессии.

Давным-давно сказал один мудрец

Что прежде надо

Связать начало и конец

У численного ряда.

Пусть требуется найти сумму первых ста натуральных чисел:

1+2+3+…+98+99+100.

Задача очень непроста:

Как сделать, чтобы быстро

От единицы и до ста

Сложить в уме все числа?

Пять первых связок изучи,

Найдёшь к решению ключи.

С этой задачей связана история, которую рассказывают об известном немецком математике Карле Гауссе.

Когда учитель предложил ученикам сложить натуральные числа от 1 до 100, то маленький Карл моментально пришел с ответом. Вероятно, он заметил, что сумма первого и последнего слагаемого равна 101, сумма второго и предпоследнего слагаемого, тоже 101 и ничего странного в этом нет. Второе слагаемое на единицу больше первого, а предпоследнее на единицу меньше последнего, так что сумма должна быть такой же. То же будет происходить и с каждой новой парой чисел. Таких сумм 50, так как всего чисел 100 и все они разделены на пары. Значит, вся сумма равна числу 101 умноженному на 50. И Гаусс подсчитал, что сумма равна 5050.

1+2+3+4+…..+97+98+99+100

1+100=101

2+99=101

3+98=101

1+2+3+4+…+97+98+99+100=101∙50=5050

С помощью аналогичных рассуждений можно найти сумму n-первых членов арифметической прогрессии:

Обозначим сумму первых n-членов арифметической прогрессии Sn и запишем эту сумму дважды, расположив в первом случае слагаемые в порядке возрастания, а во втором в порядке убывания:

Sn=a1+a2+a3++an-2+an-1+an (1)

Sn=an+an-1+an-2++a3+a2+a1 (2)

Сумма каждой пары членов прогрессии, расположенных друг под другом равна a1 + an, число таких пар равно n, поэтому сложив почленно равенства (1) и (2), получим:

2Sn=a1+ann

Разделим обе части этого равенства на 2 и получим формулу суммы первых n-членов арифметической прогрессии:

Sn=(a1+an)2n

Этой формулой удобно пользоваться, когда известны первый и последний члены арифметической прогрессии. Но можно вывести еще одну формулу, для этого вместо an подставим формулу n-го члена, которую мы узнали на прошлом занятии. Получим:

Sn=(a1+an)2n=a1+a1+dn-12n=2a1+dn-12n

Для нахождения суммы первых n-членов арифметической прогрессии, используя эту формулу, достаточно знать первый член и разность арифметической прогрессии.

Разберем несколько примеров:

Найдем сумму первых 10-ти членов арифметической прогрессии, первый член которой равен минус 23, а десятый член равен 4. Воспользуемся формулой:Sn=(a1+an)2n, получим

S10=(-23+4)210=-19210=-195=-95

Рассмотрим еще один пример:

Вычислим сумму первых двадцати двух членов арифметической прогрессии:

-15; -11; -7; -3; ….

Итак, a1=-15,d=4, значит, можно воспользоваться второй формулой: Sn=2a1+dn-12n, получим:

S22=2-15+4(22-1)222=-30+84222=5411=594.

А теперь давай найдем сумму членов арифметической прогрессии с пятнадцатого по тридцатый включительно, если первый член равен 10 и разность равна 3.

Как найти сумму с 15-го по 30-й член включительно, давай подумаем: S30=a1+a2++a14+a15++a30, если мы найдем сумму тридцати членов и вычтем из нее сумму первых 14-ти членов, то мы получим необходимую сумму с 15-го по 30-й члены.

Итак, S30=210+329230=107230=10715=1605

S14=210+313214=59214=597=413

S15-30=S30-S14=1605-413=1192

Ответ: 1192.

Эту же сумму мы могли найти и другим, способом, если бы ввели новую арифметическую последовательность, первый член которой был бы равен пятнадцатому члену нашей прогрессии.

А теперь давай решим уравнение:

x+1+x+5+x+9++x+69=684

Можно, конечно, расписать все слагаемые, привести подобные и решить это линейное уравнение, но это займет очень много времени. А если внимательно посмотреть на это уравнение, то можно заметить, что каждое следующее слагаемое отличается от предыдущего на 4. То, есть последовательность:

x + 1; x + 5; x + 9; … ; x + 69 является арифметической, сумма членов которой равна 684.

Итак, имеем: a1=x+1,a2=x+5,an=x+69, Sn=684.

Найдем разность арифметической прогрессии:

d=a2-a1=x+5-x+1=4

Найдем номер последнего члена, для этого воспользуемся формулой n-го члена: an = a1 + d(n - 1)

x + 69 = x + 1 + 4(n - 1)

x + 69 = x + 1 + 4n - 4

4n = 72, n = 18

Подставим все данные в формулу суммы первых n-членов арифметической прогрессии, получим:

684=x+1+x+5218

684 = (2x + 70) ∙ 9, отсюда 2x + 70 = 76    2x=6,    x=3

Ответ:3