Математика
Тема 11: Прогрессии. Профильный уровеньУрок 7: Формула суммы членов конечной арифметической прогрессии
- Видео
- Тренажер
- Теория
Тема: Прогрессии
Урок: Формула суммы членов конечной арифметической прогрессии
1. Вступление
Рассмотрим задачу: найти сумму натуральных чисел от 1 до 100 включительно.
Дано: 1, 2, 3, …, 98, 99, 100.
Найти: S100=1+2+3 … +98 + 99 + 100.
Решение: S100=(1+100)+(2+99)+(3+98)+…+(50+51)=101+101+101+…+101=101 х 50=5050.
Ответ: 5050.
Последовательность натуральных чисел 1, 2, 3, …, 98, 99, 100 является арифметической прогрессией: а1=1, d=1.
Мы нашли сумму первых ста натуральных чисел, т.е. сумму первых n членов арифметической прогрессии.
Рассмотренное решение предложил великий математик Карл Фридрих Гаусс, живший в 19 веке. Задача была им решена в возрасте 5-ти лет.
Историческая справка: Иога́нн Карл Фри́дрих Га́усс (1777 — 1855) — немецкий математик, механик, физик и астроном. Считается одним из величайших математиков всех времён, «королём математиков». Лауреат медали Копли (1838), иностранный член Шведской (1821) и Российской (1824) Академий наук, английского Королевского общества. Согласно легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Юный Гаусс заметил, что попарные суммы с противоположных в одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: 101x50=5050.
2. Вывод формулы суммы первых n членов арифметической прогрессии
Рассмотрим аналогичную задачу для произвольной арифметической прогрессии.
Дано: :
Найти: сумму первых n членов арифметической прогрессии.
Решение:
Покажем, что все выражения в скобках равны между собой, а именно выражению . Пусть d – разность арифметической прогрессии. Тогда:
;
; и т.д. Следовательно, мы можем записать:
. Откуда получаем формулу суммы первых n членов арифметической прогрессии:
.
3. Решение задач на применение формулы суммы первых n членов арифметической прогрессии
1. Решим задачу о сумму натуральных чисел от 1 до 100 с помощью формулы суммы первых n членов арифметической прогрессии:
Решение: а1=1, d=1, n=100.
Общая формула:
.
В нашем случае: .
Ответ: 5050.
2. Дано: .
Найти: .
Решение.
Общая формула:
. Найдем по формуле n–го члена арифметической прогрессии: .
.
В нашем случае: .
Ответ: .
3. Дано: .
Найти: .
Решение:
Чтобы найти , сначала надо найти .
Это можно сделать по общей формуле .Сначала применим эту формулу для нахождения разности арифметической прогрессии.
, т.е. . Значит .
Теперь можем найти .
.
Используя формулу суммы первых n членов арифметической прогрессии
, найдем .
.
.
Ответ: .
4. Вывод второй формулы суммы первых n членов арифметической прогрессии
Получим вторую формулу для суммы первых n членов арифметической прогрессии, а именно: докажем, что .
Доказательство:
В формулу суммы первых n членов арифметической прогрессии подставим выражение для , а именно . Получим: , т.е. . Что и требовалось доказать.
Проанализируем полученные формулы. Для вычислений по первой формуле надо знать первый член, последний член и n по второй формуле – надо знать первый член, разность и n.
И в заключение заметим, что в любом случае Sn– это квадратичная функция от n, потому что .
5. Решение задач на применение второй формулы суммы первых n членов арифметической прогрессии
1. Дано: .
Найти: .
Решение:
Общая формула:
.
В нашем случае:.
Ответ: 403.
2. Найти сумму всех двузначных чисел, кратных 4.
Решение:
{12; 16; 20; …; 96} – множество чисел, удовлетворяющих условию задачи.
Значит, имеем арифметическую прогрессию .
n найдем из формулы для :.
, т.е. . Значит .
Используя вторую формулу суммы первых n членов арифметической прогрессии
, найдем .
.
Ответ: .
3. Дано: .
Найти: S=.
Требуется найти сумму всех членов с 10 по 25-й включительно.
Один из способов решения заключается в следующем:
.
Следовательно, .
.
.
.
Ответ: .
6. Итог урока
Итак, мы вывели формулы для суммы членов конечной арифметической прогрессии. Использовали эти формулы при решении некоторых задач.
На следующем уроке мы познакомимся с характеристическим свойством арифметической прогрессии.
Список рекомендованной литературы
1. Макарычев Ю.Н. и др. Алгебра 9 класс (учебник для средней школы).-М.: Просвещение, 1992.
2. Макарычев Ю.Н., Миндюк Н.Г., Нешков, К.И. Алгебра для 9 класса с углубл. изуч. математики.-М.: Мнемозина, 2003.
3. Макарычев Ю.Н., Миндюк Н.Г Дополнительные главы к школьному учебнику алгебры 9 класса.-М.: Просвещение, 2002.
4. Галицкий М.Л., Гольдман А.М., Звавич Л.И. Сборник задач по алгебре для 8-9 классов (учебное пособие для учащихся школ и классов с углубл. изуч. математики).-М.: Просвещение, 1996.
5. Мордкович А.Г. Алгебра 9 класс, учебник для общеобразовательных учреждекний. – М.: Мнемозина, 2002.
6. Мордкович А.Г. , Мишутина Т.Н., Тульчинская Е.Е. Алгебра 9 класс, задачник для общеобразовательных учреждекний. – М.: Мнемозина, 2002.
7. Глейзер Г.И. История математики в школе. 7-8 классы (пособие для учителей).-М.: Просвещение, 1983.
Рекомендованные ссылки на интернет-ресурсы
1. Раздел College.ru по математике (Источник).
2. Портал Естественных Наук (Источник).
3. Exponenta.ru Образовательный математический сайт (Источник).
Рекомендованное домашнее задание
1. № 362, 371, 377, 382 (Макарычев Ю.Н. и др. Алгебра 9 класс).
2. № 12.96 (Галицкий М.Л., Гольдман А.М., Звавич Л.И. Сборник задач по алгебре для 8-9 классов).