Математика
Тема 12: Производная. Профильный уровеньУрок 16: Построение графика функции с помощью производной, сопутствующие задачи
- Видео
- Тренажер
- Теория
Введение
Методика исследования функции, построение ее графика, включает в себя 2 этапа:
1. исследование без производной;
2. исследование с помощью производной.
Построение графика и исследование функции без производной
При исследовании функции без производной нахождение интервалов знакопостоянства и определение знаков функции на них выполнить очень затруднительно. Однако некоторые свойства данной функции можно узнать:
1. Область определения функции – это множество всех действительных чисел.
2. Если x стремится к , то и данная функция стремится к . Следовательно, множество значений функции – это вся числовая ось.
3. График этой функции симметричен относительно точки .
Пояснение
Рассмотрим функцию
Эта функция позволяет найти интервалы знакопостоянства и построить эскиз графика (см. Рис. 1).
Эта функция нечетная:
График нечетной функции симметричен относительно точки с координатами .
При прибавлении 4 к функции график сдвинется на 4 единицы вверх по оси (см. Рис. 2): корни и пропадают, а корень сдвигается влево. Следовательно, график функции будет симметричен относительно точки .
Нам удалось установить, что функция имеет как минимум один корень, который меньше чем .
Построение графика и исследование функции с помощью производной
Приравниваем производную к 0 и находим критические точки:
– критические точки
Выделим интервалы знакопостоянства производной, которые определяют интервалы монотонности самой функции (см. Рис. 3).
До точки функция возрастала (производная была положительна), после этой точки функция убывает (производная отрицательная), следовательно, – это точка максимума.
До точки функция убывала, после этой точки функция возрастает, следовательно, – это точка минимума.
Найдем значения функции в точках минимума и максимума:
Можно сделать вывод, что функция возрастает от до 6 и от 2 до ; функция убывает от 6 до 2.
На рисунке 4 показан график функции . Этот график читается следующим образом:
Если аргумент возрастает от до , то функция возрастает от до 6; если аргумент от до 1, то функция убывает от 6 до 2; если аргумент возрастает от 1 до , то функция возрастает от 2 до .
Результаты исследования функции
1. при и при
2. при
3. – т. max
– т. min
3. . Наибольшего и наименьшего значения функции не существует.
Задача
Найти число корней уравнения в зависимости от параметра .
Решение
1. Перенесем в правую часть уравнения:
2. Построим график функции (см. Рис. 5) (как построить график этой функции см. выше).
3. Рассечем этот график семейством прямых , при разных . Найдем точки пересечения этих прямых с графиком функции (см. Рис. 6).
Уравнение имеет один корень при каждом из множества , а также из множества .
Уравнение имеет два корня при и при .
Уравнение имеет три корня при всех из множества .
Ответ: 1 корень:
2 корня: ; ;
3 корня: .
Частные случаи для задачи
1. Найти все значения параметра , при каждом из которых данное уравнение имеет ровно два различных корня.
Ответ: уравнение имеет два корня при и при .
2. Найти наибольшее натуральное значение параметра a, при котором уравнение имеет три различных корня.
Решение
Уравнение имеет три корня при всех из множества . В это множество входят такие натуральные числа: 3, 4, 5. Наибольшее из них – это 5.
Ответ: .
Общий план построения графика и исследования функции
Общий план состоит из двух этапов:
1. Этап А: исследование без производной.
2. Этап Б: исследование с производной.
Этап А
1. Найти область определения функции .
2. Выделить интервалы знакопостоянства функции и определить знаки функции на них (для этого нужно приблизительно оценить расположение корней или точно найти их).
3. Найти точку пересечения графика с осью , для этого приравнять и вычислить .
4. Выяснить специфику функции:
- четность, нечетность, периодичность;
- наличие центра или оси симметрии.
5. Построить эскиз графика в окрестностях каждого корня (в окрестностях корня функция может возрастать, убывать, иметь точку максимума или минимума (см. Рис. 7)).
6. Построить эскиз графика функции в окрестностях точек разрыва области определения . Точки разрыва – это, как правило, корни знаменателя. Они могут определять вертикальные асимптоты.
7. Построить график функции в окрестностях бесконечно удаленных точек: .
Этап Б
1. Найти производную функции .
2. Найти интервалы знакопостоянства производной и определить знаки производной на них. Эти интервалы определяют интервалы монотонности самой функции.
3. Найти критические точки, исследовать их на экстремум.
4. Построить и описать график функции .
Предложенная схема работает особенно хорошо для функций вида: , где и – многочлены.
Список литературы
1. Мордкович А.Г., Семенов П. В. Алгебра и начала математического анализа, 10 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений. – М.: Мнемозина, 2009.
2. Мордкович А.Г. Алгебра и начала математического анализа, 10 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений. – М.: Мнемозина, 2009.
3. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики). – М.: Просвещение, 1996.
4. Колягин Ю.М., Сидоров Ю.В., Ткачева М.В., Федорова М.В., Шабунин М.И. Алгебра и начала математического анализа, 10 класс. Учебник для учащихся общеобразовательных учреждений (профильный уровень). – М.: Мнемозина, 2009.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
1. Интернет-сайт «ЯКласс» (Источник)
2. Интернет-сайт «Вся элементарная математика» (Источник)
3. Интернет-сайт YouTube (Источник)
Домашнее задание
1. Задание 45.13, 45.15(а), 45.3 (б) (стр. 265) – Мордкович А.Г. Алгебра и начала математического анализа, 10 класс. В 2 ч. Ч. 2. Задачник (Источник)
2. Исследуйте функцию и постройте ее график .