Математика
Тема 12: Производная. Профильный уровеньУрок 17: Дифференцирование сложных функций. Задача из практики подготовки к ЕГЭ по математике
- Видео
- Тренажер
- Теория
Дифференцирование сложной функции. Примеры
Сложную функцию мы уже дифференцировали, но аргументом служила линейная функция, а именно, умеем дифференцировать функцию . Например, . Сейчас таким же образом будем находить производные от сложной функции, где вместо линейной функции может быть другая функция.
Начнем с функции
1.
Итак, нашли производную синуса от сложной функции, где аргументом синуса была квадратичная функция.
Если надо будет найти значение производной в конкретной точке, то эту точку нужно подставить в найденную производную.
Итак, на двух примерах увидели, как работает правило дифференцирования сложной функции.
Таблица производных сложных функций
1.
2.
3. . Напомним, что .
Пример.
4. .
Пример.
5.
6.
7.
8. .
Таким образом, таблицу дифференцирования сложных функций, на данном этапе, закончим. Дальше, конечно, она будет еще больше обобщаться, а сейчас перейдем к конкретным задачам на производную.
Задача из практики подготовки к ЕГЭ
В практике подготовки к ЕГЭ предлагаются следующие задачи.
Найти минимум функции .
Решение.
ОДЗ: .
Найдем производную . Напомним, что , .
Приравняем производную к нулю . Точка - входит в ОДЗ.
Найдем интервалы знакопостоянства производной (интервалы монотонности функции) (см. рис.1).
Рис. 1. Интервалы монотонности для функции .
Рассмотрим точку и выясним, является ли она точкой экстремума. Достаточный признак экстремума заключается в том, чтобы производная при переходе через точку меняет знак. В данном случае производная меняет знак, значит, - точка экстремума. Так как производная меняет знак с «-» на «+», то - точка минимума. Найдем значение функции в точке минимума: . Нарисуем схему (см. рис.2).
Рис.2. Экстремум функции .
На промежутке - функция убывает, на - функция возрастает, точка экстремума единственная. Наименьшее значение функция принимает только в точке .
Ответ: .
Итог урока
На уроке рассмотрели дифференцирование сложных функций, составили таблицу и рассмотрели правила дифференцирования сложной функции, привели пример применения производной из практики подготовки к ЕГЭ.
Список рекомендованной литературы
- Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2009.
- Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.
- Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.
- Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.
- Сборник задач по математике для поступающих во ВТУЗы (под ред. М.И.Сканави).-М.:Высшая школа, 1992.
- Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер.-К.: А.С.К., 1997.
- ЗвавичЛ.И., Шляпочник Л.Я., Чинкина Алгебра и начала анализа. 8-11 кл.: Пособие для школ и классов с углубленным изучением математики (дидактические материалы).-М.: Дрофа, 2002.
- Саакян С.М., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.
- Карп А.П. Сборник задач по алгебре и началам анализа : учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.
- Глейзер Г.И. История математики в школе. 9-10 классы (пособие для учителей).-М.: Просвещение, 1983
Дополнительные веб-ресурсы
- Интернет-портал Mathematics.ru (Источник).
- Портал Естественных Наук (Источник).
- Интернет-портал Exponenta.ru (Источник).
Сделай дома
№№ 42.2, 42.3 (Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.)