Математика
Тема 10: Показательная и логарифмическая функции. Профильный уровеньУрок 4: Показательные уравнения. Более сложные случаи
- Видео
- Тренажер
- Теория
Определение и свойства показательной функции, методика решения простейших показательных уравнений
Напомним определение и основные свойства показательной функции. Именно на свойствах базируется решение всех показательных уравнений и неравенств.
Показательная функция – это функция вида , где основание степени и Здесь х – независимая переменная, аргумент; у – зависимая переменная, функция.
На графике показаны возрастающая и убывающая экспоненты, иллюстрирующие показательную функцию при основании большем единицы и меньшем единицы, но большим нуля соответственно.
Обе кривые проходят через точку (0;1)
Свойства показательной функции:
Область определения: ;
Область значений: ;
Функция монотонна, при возрастает, при убывает.
Монотонная функция принимает каждое свое значение при единственном значении аргумента.
При когда аргумент возрастает от минус до плюс бесконечности, функция возрастает от нуля не включительно до плюс бесконечности. При наоборот, когда аргумент возрастает от минус до плюс бесконечности, функция убывает от бесконечности до нуля не включительно.
Решение типовых показательных уравнений
Напомним, как решать простейшие показательные уравнения. Их решение основано на монотонности показательной функции. К таким уравнениям сводятся практически все сложные показательные уравнения.
Равенство показателей степени при равных основаниях обусловлено свойством показательной функции, а именно ее монотонностью.
Методика решения:
Уравнять основания степеней;
Приравнять показатели степеней.
Перейдем к рассмотрению более сложных показательных уравнений, наша цель – свести каждое из них к простейшему.
Пример 1:
Освободимся от корня в левой части и приведем степени к одинаковому основанию:
Для того чтобы свести сложное показательное уравнение к простейшим, часто используется замена переменных.
Пример 2:
Воспользуемся свойством степени:
Вводим замену. Пусть , тогда . При такой замене очевидно, что у принимает строго положительные значения. Получаем:
Умножим полученное уравнение на два и перенесем все слагаемые в левую часть:
Первый корень не удовлетворяет промежутку значений у, отбрасываем его. Получаем:
Пример 3:
Приведем степени к одинаковому показателю:
Вводим замену:
Пусть , тогда . При такой замене очевидно, что у принимает строго положительные значения. Получаем:
Решать подобные квадратные уравнения мы умеем, выпишем ответ:
Чтобы удостовериться в правильности нахождения корней, можно выполнить проверку по теореме Виета, т. е. найти сумму корней и их произведение и сверить с соответствующими коэффициентами уравнения.
Получаем:
Методика решения однородных показательных уравнений второй степени
Изучим следующий важный тип показательных уравнений:
Уравнения такого типа называют однородными второй степени относительно функций f и g. В левой его части стоит квадратный трехчлен относительно f с параметром g или квадратный трехчлен относительно g с параметром f.
Методика решения:
Данное уравнение можно решать как квадратное, но легче поступить по-другому. Следует рассмотреть два случая:
1.
2.
В первом случае получаем
Во втором случае имеем право разделить на старшую степень и получаем:
Следует ввести замену переменных , получим квадратное уравнение относительно у:
Обратим внимание, что функции f и g могут быть любыми, но нас интересует тот случай, когда это показательные функции.
Примеры решения однородных уравнений
Пример 4:
Перенесем все слагаемые в левую часть уравнения:
Воспользуемся свойствами степени и приведем все степени к простым основаниям:
Несложно заметить функции f и g:
Поскольку показательные функции приобретают строго положительные значения, имеем право сразу делить уравнение на , не рассматривая случай, когда :
Получаем:
Вводим замену: (согласно свойствам показательной функции)
Получили квадратное уравнение:
Определяем корни по теореме Виета:
Первый корень не удовлетворяет промежутку значений у, отбрасываем его, получаем:
Пример 5:
Воспользуемся свойствами степени и приведем все степени к простым основаниям:
Несложно заметить функции f и g:
Поскольку показательные функции приобретают строго положительные значения, имеем право сразу делить уравнение на , не рассматривая случай, когда :
Получаем:
Вводим замену: (согласно свойствам показательной функции)
Получили квадратное уравнение:
Определяем корни:
Первый корень не удовлетворяет промежутку значений у, отбрасываем его, получаем:
Решение системы показательных уравнений
Решение отдельных показательных уравнений является ключом к решению систем показательных уравнений.
Пример 6 – решить систему:
В обоих уравнениях приведем основания степеней к простым числам:
Получили систему двух линейных уравнений относительно двух неизвестных, такие системы мы умеем решать, например, методом подстановки:
Ответ: (1;3)
Итак, мы рассмотрели решение разнообразных сложных показательных уравнений, вывели методики их сведения к простейшим показательным уравнениям. На следующем уроке перейдем к решению показательных неравенств.
Список литературы
- Мордкович А.Г. Алгебра и начала математического анализа. – М.: Мнемозина.
- Муравин Г.К., Муравина О.В. Алгебра и начала математического анализа. – М.: Дрофа.
- Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала математического анализа. – М.: Просвещение.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Домашнее задание
1. Алгебра и начала анализа, 10–11 класс (А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын) 1990, № 465, 471;
2. Решить уравнение:
3. Решить систему уравнений: